Thompson’s conjecture for alternating group of degree 22

Mingchun XU

PDF(104 KB)
PDF(104 KB)
Front. Math. China ›› DOI: 10.1007/s11464-013-0320-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Thompson’s conjecture for alternating group of degree 22

Author information +
History +

Abstract

For a finite group G, it is denoted by N(G) the set of conjugacy class sizes of G. In 1980s, J. G. Thompson posed the following conjecture: if L is a finite nonabelian simple group, G is a finite group with trivial center, and N(G) = N(L), then L and G are isomorphic. In this paper, it is proved that Thompson’s conjecture is true for the alternating group A22 with connected prime graph.

Keywords

Finite group / conjugacy class size / simple group / prime graph of a group

Cite this article

Download citation ▾
Mingchun XU. Thompson’s conjecture for alternating group of degree 22. Front Math Chin, https://doi.org/10.1007/s11464-013-0320-z

References

[1]
Bi J X. A quantitative property of the length of the conjugacy classes of finite simple groups. J Liaoning Univ, 2008, 35: 5-6 (in Chinese)
[2]
Chen G Y. On Thompson’s conjecture. J Algebra, 1996, 185: 185-193
[3]
Chen G Y. Further reflections on Thompson’s conjecture. J Algebra, 1999, 218: 276-285
CrossRef Google scholar
[4]
Chillag D, Herzog M. On the length of the conjugacy classes of finite groups. J Algebra, 1990, 131: 110-125
CrossRef Google scholar
[5]
Conway J H, Curtis R T, Norton S P, Parker R A, WilsonR A. An Atlas of Finite Groups. Oxford: Clarendon Press, 1985
[6]
James G D, Kerber A. The Representation Theory of Symmetric Group. London: Addison Wesley Publishing Company, Inc, 1981, 8-15
[7]
Khosravi A, Khosravi B. A new characterization of some alternating and symmetric groups. IJMMS, 2003, 45: 2863-2872
[8]
Khukhro E I, Mazurov V D. Unsolved Problems in Group Theory: the Kourovka Notebook. 16th ed. Novosibirsk: Sobolev Institute of Mathematics, 2006
[9]
Kondrat’ev A S. On prime graph components of finite groups. Mat Sb, 1989, 180: 787-797
[10]
The GAP Group: GAP-Groups, Algorithms, and Programming. Version 4.4.10, 2007, http://www.gap-system.org
[11]
Vasil’ev A V. On Thompson’s conjecture. Siberian Electronic Mathematical Reports, 2009, 6: 457-464
[12]
Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69: 489-513
CrossRef Google scholar
[13]
Zavarnitsine A V. Finite simple groups with narrow prime spectrum. Siberian Electronic Mathematical Reports, 2009, 6: 1-12

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(104 KB)

Accesses

Citations

Detail

Sections
Recommended

/