Valued Gabriel quiver of a wedge product and semiprime coalgebras

Gabriel NAVARRO

PDF(240 KB)
PDF(240 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1157-1183. DOI: 10.1007/s11464-013-0310-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Valued Gabriel quiver of a wedge product and semiprime coalgebras

Author information +
History +

Abstract

We describe the valued Gabriel quiver of a wedge product of coalgebras and study the category of comodules of a semiprime coalgebra. In particular, we prove that any monomial semiprime k-tame fc-tame coalgebra is string. We also prove a version of Eisenbud-Griffith theorem for coalgebras, namely, any hereditary semiprime strictly quasi-finite coalgebra is serial.

Keywords

Wedge product / semiprime coalgebras / representation theory / valued Gabriel quiver

Cite this article

Download citation ▾
Gabriel NAVARRO. Valued Gabriel quiver of a wedge product and semiprime coalgebras. Front Math Chin, 2013, 8(5): 1157‒1183 https://doi.org/10.1007/s11464-013-0310-1

References

[1]
Abe E. Hopf Algebras. Cambridge: Cambridge University Press, 1977
[2]
Abuhlail J Y. Fully coprime comodules and fully coprime corings. Appl Categ Structures, 2006, 14(5-6): 379-409
CrossRef Google scholar
[3]
Abuhlail J Y. A Zariski topology for bicomodules and corings. Appl Categ Structures, 2008, 16(1-2): 13-28
CrossRef Google scholar
[4]
Chen X W, Huang H, Zhang P. Dual Gabriel theorem with applications. Sci China Ser A, Mathematics, 2006, 49: 9-26
[5]
Chen X W, Zhang P. Comodules of Uq(slq) and modules of SLq (2) via quiver methods. J Pure Appl Algebra, 2007, 211: 862-876
CrossRef Google scholar
[6]
Chin W. Special biserial coalgebras and representations of quantum SL(2). J Algebra, 2012, 353: 1-21
CrossRef Google scholar
[7]
Chin W, Montgomery S. Basic coalgebras. AMS/IP Studies in Advanced Mathematics, 1997, 4: 41-47
[8]
Cuadra J. Extensions of rational modules. Int J Math Math Sci, 2003, 69: 4363-4371
CrossRef Google scholar
[9]
Cuadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426
CrossRef Google scholar
[10]
Eisenbud D, Griffith P. Serial rings. J Algebra, 1971, 17: 389-400
CrossRef Google scholar
[11]
Ferrero M, Rodrigues V. On prime and semiprime modules and comodules. J Algebra Appl, 2006, 5(5): 681-694
CrossRef Google scholar
[12]
Gabriel P. Des categories abeliennes. Bull Soc Math France, 1962, 90: 323-448
[13]
Gómez-Torrecillas J, Năstăsescu C, Torrecillas B. Localization in coalgebras. Applications to finiteness conditions. J Algebra Appl, 2007, 6: 233-243
CrossRef Google scholar
[14]
Gómez-Torrecillas J, Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059
CrossRef Google scholar
[15]
Han Y. Wild two-point algebras. J Algebra, 2002, 247: 57-77
CrossRef Google scholar
[16]
Jara P, Llena D, Merino L, Ştefan D. Hereditary and formally smooth coalgebras. Algebr Represent Theory, 2005, 8(3): 363-374
CrossRef Google scholar
[17]
Jara P, Merino L M, Navarro G. On path coalgebras of quivers with relations. Colloq Math, 2005, 102: 49-65
CrossRef Google scholar
[18]
Jara P, Merino L M, Navarro G. Localization in tame and wild coalgebras. J Pure Appl Algebra, 2007, 211: 342-359
CrossRef Google scholar
[19]
Jara P, Merino L M, Navarro G, Ruíz J F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856
CrossRef Google scholar
[20]
Jara P, Merino L M, Navarro G, RuízJ F. Prime path coalgebras. Arab J Sci Eng, 2008, 33(2C): 273-283
[21]
Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505
CrossRef Google scholar
[22]
Kosakowska J, Simson D. Bipartite coalgebras and a reduction functor for coradical square complete coalgebras. Colloq Math, 2008, 112: 89-129
CrossRef Google scholar
[23]
Lin I-Peng. B. Morita’s theorem for coalgebras. Comm Algebra, 1974, 1(4): 311-344
CrossRef Google scholar
[24]
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, No 82. Providence: Amer Math Soc, 1993
[25]
Montgomery S. Indecomposable coalgebras, simple comodules, and pointed Hopf algebras. Proc Amer Math Soc, 1995, 123: 2343-2351
CrossRef Google scholar
[26]
Navarro G. Some remarks on localization in coalgebras. Comm Algebra, 2008, 36: 3447-3466
CrossRef Google scholar
[27]
Nekooei R, Torkzadeh L. Topology on coalgebras. Bull Iran Math Soc, 2001, 27(2): 45-63
[28]
Radford D E. On the structure of pointed coalgebras. Algebra J, 1982, 77: 1-14
CrossRef Google scholar
[29]
Ringel C M. The representation type of local algebras. In:Dlab V, Gabriel P, eds. Proceedings of the International Conference on Representations of Algebras, Ottawa, 1974. Lecture Notes in Mathematics, 488. Berlin: Springer, 1975, 282-305
[30]
Simson D. Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl 4. London: Gordon & Breach, 1992
[31]
Simson D. Coalgebras, comodules, pseudocompact algebras and tame comodule type. Colloq Math, 2001, 90: 101-150
CrossRef Google scholar
[32]
Simson D. Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras. Lectures Notes in Pure and Applied Mathematics, 2005, 236: 465-492
[33]
Simson D. Irreducible morphisms, the Gabriel-valued quiver and colocalizations for coalgebras. Int J Math Sci, 2006, 72: 1-16
CrossRef Google scholar
[34]
Simson D. Hom-computable coalgebras, a composition factors matrix and the Euler bilinear form of an Euler coalgebra. J Algebra, 2007, 315: 42-75
CrossRef Google scholar
[35]
Simson D. Localising embeddings of comodule categories with applications to tame and Euler coalgebras. J Algebra, 2007, 312: 455-494
CrossRef Google scholar
[36]
Simson D. Tame-wild dichotomy for coalgebras. J Lond Math Soc (2), 2008, 78: 783-797
[37]
Simson D. Tame comodule type, Roiter bocses, and a geometry context for coalgebras. Ukrainian Math J, 2009, 61(6): 810-833
CrossRef Google scholar
[38]
Simson D. Coalgebras of tame comodule type, comodule categories and a tame-wild dichotomy problem. In: Skowroński A, Yamagata K, eds. Proc ICRA-XIV Tokyo, August 2010, Series of Congress Reports. Zürich: European Math Soc Publishing House, 2011
[39]
Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol 2: Tubes and Concealed Algebras of Euclidean Type. London Math Soc Student Texts 71. Cambridge: Cambridge University Press, 2007
[40]
Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol 3: Representation-infinite Tilted Algebras. London Math Soc Student Texts 72. Cambridge: Cambridge University Press, 2007
[41]
Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[42]
Takeuchi M. Tangent coalgebras and hyperalgebras. I. Japan J Math, 1974, 42: 1-143
[43]
Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644
[44]
Tuganbaev A A. Distributively decomposable rings. Russian Math Surveys, 1996, 51: 569-570
CrossRef Google scholar
[45]
Wijayanti I A, Wisbauer R. On coprime modules and comodules. Comm Algebra, 2009, 37(4): 1308-1333
CrossRef Google scholar
[46]
Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794
CrossRef Google scholar
[47]
Yao H, Fan W. Finite dimensional (*)-serial algebras. Sci China Ser A, 2010, 53: 3049-3056
CrossRef Google scholar
[48]
Yao H, Fan W, Ping Y. (*)-serial coalgebras. Front Math China, 2012, 7(5): 955-970

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(240 KB)

Accesses

Citations

Detail

Sections
Recommended

/