Valued Gabriel quiver of a wedge product and semiprime coalgebras

Gabriel Navarro

Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1157 -1183.

PDF (240KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1157 -1183. DOI: 10.1007/s11464-013-0310-1
Research Article
RESEARCH ARTICLE

Valued Gabriel quiver of a wedge product and semiprime coalgebras

Author information +
History +
PDF (240KB)

Abstract

We describe the valued Gabriel quiver of a wedge product of coalgebras and study the category of comodules of a semiprime coalgebra. In particular, we prove that any monomial semiprime k-tame fc-tame coalgebra is string. We also prove a version of Eisenbud-Griffith theorem for coalgebras, namely, any hereditary semiprime strictly quasi-finite coalgebra is serial.

Keywords

Wedge product / semiprime coalgebras / representation theory / valued Gabriel quiver

Cite this article

Download citation ▾
Gabriel Navarro. Valued Gabriel quiver of a wedge product and semiprime coalgebras. Front. Math. China, 2013, 8(5): 1157-1183 DOI:10.1007/s11464-013-0310-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abe E. Hopf Algebras, 1977, Cambridge: Cambridge University Press

[2]

Abuhlail J Y. Fully coprime comodules and fully coprime corings. Appl Categ Structures, 2006, 14(5–6): 379-409

[3]

Abuhlail J Y. A Zariski topology for bicomodules and corings. Appl Categ Structures, 2008, 16(1–2): 13-28

[4]

Chen X W, Huang H, Zhang P. Dual Gabriel theorem with applications. Sci China Ser A, Mathematics, 2006, 49: 9-26

[5]

Chen X W, Zhang P. Comodules of Uq(sl2) and modules of SLq(2) via quiver methods. J Pure Appl Algebra, 2007, 211: 862-876

[6]

Chin W. Special biserial coalgebras and representations of quantum SL(2). J Algebra, 2012, 353: 1-21

[7]

Chin W, Montgomery S. Basic coalgebras. AMS/IP Studies in Advanced Mathematics, 1997, 4: 41-47

[8]

Cuadra J. Extensions of rational modules. Int J Math Math Sci, 2003, 69: 4363-4371

[9]

Cuadra J, Gómez-Torrecillas J. Idempotents and Morita-Takeuchi theory. Comm Algebra, 2002, 30: 2405-2426

[10]

Eisenbud D, Griffith P. Serial rings. J Algebra, 1971, 17: 389-400

[11]

Ferrero M, Rodrigues V. On prime and semiprime modules and comodules. J Algebra Appl, 2006, 5(5): 681-694

[12]

Gabriel P. Des categories abeliennes. Bull Soc Math France, 1962, 90: 323-448

[13]

Gómez-Torrecillas J, Nąstąsescu C, Torrecillas B. Localization in coalgebras. Applications to finiteness conditions. J Algebra Appl, 2007, 6: 233-243

[14]

Gómez-Torrecillas J, Navarro G. Serial coalgebras and their valued Gabriel quivers. J Algebra, 2008, 319: 5039-5059

[15]

Han Y. Wild two-point algebras. J Algebra, 2002, 247: 57-77

[16]

Jara P, Llena D, Merino L, Ştefan D. Hereditary and formally smooth coalgebras. Algebr Represent Theory, 2005, 8(3): 363-374

[17]

Jara P, Merino L M, Navarro G. On path coalgebras of quivers with relations. Colloq Math, 2005, 102: 49-65

[18]

Jara P, Merino L M, Navarro G. Localization in tame and wild coalgebras. J Pure Appl Algebra, 2007, 211: 342-359

[19]

Jara P, Merino L M, Navarro G, Ruíz J F. Localization in coalgebras, stable localizations and path coalgebras. Comm Algebra, 2006, 34: 2843-2856

[20]

Jara P, Merino L M, Navarro G, Ruíz J F. Prime path coalgebras. Arab J Sci Eng, 2008, 33(2C): 273-283

[21]

Kosakowska J, Simson D. Hereditary coalgebras and representations of species. J Algebra, 2005, 293: 457-505

[22]

Kosakowska J, Simson D. Bipartite coalgebras and a reduction functor for coradical square complete coalgebras. Colloq Math, 2008, 112: 89-129

[23]

Lin I-Peng. B. Morita’s theorem for coalgebras. Comm Algebra, 1974, 1(4): 311-344

[24]

Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series in Mathematics, No 82, 1993, Providence: Amer Math Soc

[25]

Montgomery S. Indecomposable coalgebras, simple comodules, and pointed Hopf algebras. Proc Amer Math Soc, 1995, 123: 2343-2351

[26]

Navarro G. Some remarks on localization in coalgebras. Comm Algebra, 2008, 36: 3447-3466

[27]

Nekooei R, Torkzadeh L. Topology on coalgebras. Bull Iran Math Soc, 2001, 27(2): 45-63

[28]

Radford D E. On the structure of pointed coalgebras. Algebra J, 1982, 77: 1-14

[29]

Ringel C M. Dlab V, Gabriel P. The representation type of local algebras. Proceedings of the International Conference on Representations of Algebras, Ottawa, 1974. Lecture Notes in Mathematics, 488, 1975, Berlin: Springer 282 305

[30]

Simson D. Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl 4, 1992, London: Gordon & Breach

[31]

Simson D. Coalgebras, comodules, pseudocompact algebras and tame comodule type. Colloq Math, 2001, 90: 101-150

[32]

Simson D. Path coalgebras of quivers with relations and a tame-wild dichotomy problem for coalgebras. Lectures Notes in Pure and Applied Mathematics, 2005, 236: 465-492

[33]

Simson D. Irreducible morphisms, the Gabriel-valued quiver and colocalizations for coalgebras. Int J Math Sci, 2006, 72: 1-16

[34]

Simson D. Hom-computable coalgebras, a composition factors matrix and the Euler bilinear form of an Euler coalgebra. J Algebra, 2007, 315: 42-75

[35]

Simson D. Localising embeddings of comodule categories with applications to tame and Euler coalgebras. J Algebra, 2007, 312: 455-494

[36]

Simson D. Tame-wild dichotomy for coalgebras. J Lond Math Soc (2), 2008, 78: 783-797

[37]

Simson D. Tame comodule type, Roiter bocses, and a geometry context for coalgebras. Ukrainian Math J, 2009, 61(6): 810-833

[38]

Simson D. Skowroński A, Yamagata K. Coalgebras of tame comodule type, comodule categories and a tame-wild dichotomy problem. Proc ICRA-XIV Tokyo, August 2010, Series of Congress Reports, 2011, Zürich: European Math Soc Publishing House

[39]

Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol 2: Tubes and Concealed Algebras of Euclidean Type. London Math Soc Student Texts 71, 2007, Cambridge: Cambridge University Press

[40]

Simson D, Skowroński A. Elements of the Representation Theory of Associative Algebras, Vol 3: Representation-infinite Tilted Algebras. London Math Soc Student Texts 72, 2007, Cambridge: Cambridge University Press

[41]

Sweedler M E. Hopf Algebras, 1969, New York: Benjamin

[42]

Takeuchi M. Tangent coalgebras and hyperalgebras. I. Japan J Math, 1974, 42: 1-143

[43]

Takeuchi M. Morita theorems for categories of comodules. J Fac Sci Uni Tokyo, 1977, 24: 629-644

[44]

Tuganbaev A A. Distributively decomposable rings. Russian Math Surveys, 1996, 51: 569-570

[45]

Wijayanti I A, Wisbauer R. On coprime modules and comodules. Comm Algebra, 2009, 37(4): 1308-1333

[46]

Woodcock D. Some categorical remarks on the representation theory of coalgebras. Comm Algebra, 1997, 25: 2775-2794

[47]

Yao H, Fan W. Finite dimensional (*)-serial algebras. Sci China Ser A, 2010, 53: 3049-3056

[48]

Yao H, Fan W, Ping Y. (*)-serial coalgebras. Front Math China, 2012, 7(5): 955-970

AI Summary AI Mindmap
PDF (240KB)

958

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/