PDF
(111KB)
Abstract
Let f(z) be a Hecke-Maass cusp form for SL2(ℤ), and let L(s, f) be the corresponding automorphic L-function associated to f. For sufficiently large T, let N(σ, T) be the number of zeros ρ = β +iγ of L(s, f) with |γ| ⩽ T, β ⩾ σ, the zeros being counted according to multiplicity. In this paper, we get that for 3/4 ⩽ σ ⩽ 1 − ɛ, there exists a constant C = C(ɛ) such that N(σ,T) ≪ T2(1−σ)/σ(logT) C, which improves the previous results.
Keywords
Maass form
/
automorphic L-function
/
zero density
Cite this article
Download citation ▾
Hengcai Tang.
Zero density of L-functions related to Maass forms.
Front. Math. China, 2013, 8(4): 923-932 DOI:10.1007/s11464-013-0303-0
| [1] |
Heath-Brown D R. On the density of the zeros of the Dedekind zeta-function. Acta Arith, 1977, 33: 169-181
|
| [2] |
Ivić A, Meurman T. Sums of coefficients of Hecke series. Acta Arith, 1994, LXVIII: 341-368
|
| [3] |
Iwaniec H, Sarnak P. Perspectives of the analytic theory of L-functions. Geom Funct Anal, 2000 705 741
|
| [4] |
Jutila M. Zero-density estimates for L-functions. Acta Arith, 1977, 32: 55-62
|
| [5] |
Kim H H, Sarnak P. Refined estimates towards the Ramanujan and Selberg conjectures. J Amer Math Soc, 2003, 16: 175-181
|
| [6] |
Kohnen W, Sankaranarayanan A, Sengupta J. The quadratic mean of automorphic L-functions. In: Automorphic Forms and Zeta Functions. Singapore: World Sci, 2005 262 279
|
| [7] |
Lau Y K, Lü G S. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687-716
|
| [8] |
Sankaranarayanan A, Sengupta J. Zero-density estimate of L-functions attached to Maass forms. Acta Arith, 2007, 127: 273-284
|
| [9] |
Xu Z. A new zero-density result of L-functions attached to Maass forms. Acta Math Sin (Engl Ser), 2011, 27: 1149-1162
|