Zero density of L-functions related to Maass forms

Hengcai TANG

PDF(111 KB)
PDF(111 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 923-932. DOI: 10.1007/s11464-013-0303-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Zero density of L-functions related to Maass forms

Author information +
History +

Abstract

Let f(z) be a Hecke-Maass cusp form for SL2(), and let L(s, f) be the corresponding automorphic L-function associated to f. For sufficiently large T, let N(σ, T ) be the number of zeros ρ =β +iγ of L(s, f) with |γ|≤T, βσ, the zeros being counted according to multiplicity. In this paper, we get that for 3/4≤σ≤1-ϵ, there exists a constant C = C(ϵ) such that N(σ,T)T2(1-σ)/σ(logT)C, which improves the previous results.

Keywords

Maass form / automorphic L-function / zero density

Cite this article

Download citation ▾
Hengcai TANG. Zero density of L-functions related to Maass forms. Front Math Chin, 2013, 8(4): 923‒932 https://doi.org/10.1007/s11464-013-0303-0

References

[1]
Heath-Brown D R. On the density of the zeros of the Dedekind zeta-function. Acta Arith, 1977, 33: 169-181
[2]
Ivić A, Meurman T. Sums of coefficients of Hecke series. Acta Arith, 1994, LXVIII: 341-368
[3]
Iwaniec H, Sarnak P. Perspectives of the analytic theory of L-functions. Geom Funct Anal, 2000, special volume: 705-741
[4]
Jutila M. Zero-density estimates for L-functions. Acta Arith, 1977, 32: 55-62
[5]
Kim H H, Sarnak P. Refined estimates towards the Ramanujan and Selberg conjectures. J Amer Math Soc, 2003, 16: 175-181
CrossRef Google scholar
[6]
Kohnen W, Sankaranarayanan A, Sengupta J. The quadratic mean of automorphic L-functions. In: Automorphic Forms and Zeta Functions. Singapore: World Sci, 2005, 262-279
[7]
Lau Y K, Lü G S. Sums of Fourier coefficients of cusp forms. Quart J Math, 2011, 62: 687-716
CrossRef Google scholar
[8]
Sankaranarayanan A, Sengupta J. Zero-density estimate of L-functions attached to Maass forms. Acta Arith, 2007, 127: 273-284
CrossRef Google scholar
[9]
Xu Z. A new zero-density result of L-functions attached to Maass forms. Acta Math Sin (Engl Ser), 2011, 27: 1149-1162
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(111 KB)

Accesses

Citations

Detail

Sections
Recommended

/