A computational algebraic-geometry method for conditional-independence inference

Benchong LI, Shoufeng CAI, Jianhua GUO

PDF(155 KB)
PDF(155 KB)
Front. Math. China ›› DOI: 10.1007/s11464-013-0295-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A computational algebraic-geometry method for conditional-independence inference

Author information +
History +

Abstract

We consider the problems of semi-graphoid inference and of independence implication from a set of conditional-independence statements. Based on ideas from R. Hemmecke et al. [Combin. Probab. Comput., 2008, 17: 239-257], we present algebraic-geometry characterizations of these two problems, and propose two corresponding algorithms. These algorithms can be realized with any computer algebra system when the number of variables is small.

Keywords

Conditional independence / independence implication / radical membership / semi-graphoid inference / structural imset

Cite this article

Download citation ▾
Benchong LI, Shoufeng CAI, Jianhua GUO. A computational algebraic-geometry method for conditional-independence inference. Front Math Chin, https://doi.org/10.1007/s11464-013-0295-9

References

[1]
4ti2 team: 4ti2—A software package for algebraic, geometric and combinatorial problems on linear spaces. www.4ti2.de.
[2]
Baioletti M, Busanello G, Vantaggi B. Conditional independence structure and its closure: Inference rules and algorithms. Int J Approx Reason, 2009, 50: 1097-1114
CrossRef Google scholar
[3]
Bouckaert R R, Hemmecke R, Lindner S, Studený M. Efficient algorithms for conditional independence inference. J Mach Learn Res, 2010, 11: 3453-3479
[4]
Bouckaert R R, Studený M. Racing algorithms for conditional independence inference. Int J Approx Reason, 2007, 45: 386-401
CrossRef Google scholar
[5]
Bruns W, Hemmecke R, Ichim B, Köppe M, Söger C. Challenging computations of Hilbert bases of cones associated with algebraic statistics. Experiment Math, 2011, 20: 25-33
CrossRef Google scholar
[6]
Chickering D M. Optimal structure identification with greedy search. J Mach Learn Res, 2002, 3: 507-554
[7]
Cowell R G, Dawid A P, Lauritzen S L, Spiegelhalter D G. Probabilistic Network and Expert System. New York: Springer-Verlag, 1999
[8]
Cox D, Little J, O’ Shea D. Ideals, Varieties, and Algorithms. 3rd ed. Undergrad Texts Math. New York: Springer, 2007
[9]
Cox D R, Wermuth N. Multivariate Dependencies: Models Analysis and Interpretation. London: Chapman & Hall, 1993
[10]
Dawid A P. Conditional independence in statistical theory. J Roy Statist Soc Ser B, 1979, 41: 1-31
[11]
Dawid A P. Separoids: a mathematical framework for conditional independence and irrelevance. Ann Math Artif Intell, 2001, 32: 335-372
CrossRef Google scholar
[12]
Decker W, Greuel G M, Pfister G, Schönemann H. Singular 3-1-1—A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2011
[13]
Drton M, Sturmdels B, Sullivant S. Lectures on Algebraic Statistics. Oberwolfach Seminars, Vol 39. Berlin: Springer, 2009
CrossRef Google scholar
[14]
Edwards D. Introduction to Graphical Modelling. 2nd ed. Berlin: Springer-Verlag, 2000
CrossRef Google scholar
[15]
Hemmecke R, Morton J, Shiu A, Sturmfels B, Wienand O. Three counterexamples on semigraphoids. Combin Probab Comput, 2008, 17: 239-257
[16]
Lauritzen S L. Graphical Models. Oxford: Clarendon Press, 1996
[17]
Matúš F. Conditional independences among four random variables III: Final conclusion. Combin Probab Comput, 1999, 8: 269-276
CrossRef Google scholar
[18]
Matúš F. Lengths of semigraphoid inferences. Ann Math Artif Intell, 2002, 35: 287-294
CrossRef Google scholar
[19]
Matúš F. Towards classification of semi-graphoids. Discrete Math, 2004, 277: 115-145
CrossRef Google scholar
[20]
Matúš F. Conditional independences in Gaussian vectors and rings of polynomials. In: Kern-Isberner G, Rodder W, Kulmann F, eds. Proceedings of WCII 2002, Lect Notes Artif Intell, 3301. Berlin, Heidelberg: Springer-Verlag, 2005, 152-161
[21]
Neapolitan R E. Learning Bayesian Networks. Upper Saddle River: Pearson Prentice Hall, 2004
[22]
Niepert M. Logical inference algorithms and matrix representations for probabilistic conditional independence. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, 2009. 2009, 428-435
[23]
Niepert M, Gucht D V, Gyssens M. On the conditional independence implication problem: a lattice-theoretic approach. In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, 2008. 2008, 435-443
[24]
Pearl J. Probabilistic Reasoning in Intelligent Systems. Burlington: Morgan Kaufmann, 1988
[25]
Shenoy P P. Conditional independence in valuation-based systems. Int J Approx Reason, 1994, 10: 203-234
CrossRef Google scholar
[26]
Studený M. Conditional independence relations have no finite complete characterization. In: Kubik S, Visek J A, eds. Information Theory, Statistical Decision Functions and Random Processes, Vol B. Dordrecht: Kluwer, 1992, 377-396
[27]
Studený M. Semigraphoids and structures of probabilistic conditional independence. Ann Math Artif Intell, 1997, 21: 71-98
CrossRef Google scholar
[28]
Studený M. Complexity of structural models. In: Proceedings of the Prague Stochastics ’ 98, Prague. 1998, 521-528
[29]
Studený M. Probabilistic Conditional Independence Structures. Berlin: Springer- Verlag, 2005
[30]
Studený M, Bouckaert R R, Kocka T. Extreme Supermodular Set Functions Over Five Variables. Prague: Institute of Information Theory and Automation, 2000
[31]
Verma T, Pearl J. Causal networks, semantics and expressiveness. In: Shachter R D, Lewitt T S, Kanal L N, Lemmer J F, eds. Uncertainty in Artificial Intelligence, 4. Amsterdam: North-Holland, 1990, 69-76
[32]
Whittaker J. Graphical Models in Applied Multivariate Statistics. New York: Wiley, 1990

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(155 KB)

Accesses

Citations

Detail

Sections
Recommended

/