Structured multi-way arrays and their applications

Xu KONG, Yaolin JIANG

Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 345-369.

PDF(343 KB)
PDF(343 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 345-369. DOI: 10.1007/s11464-013-0294-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Structured multi-way arrays and their applications

Author information +
History +

Abstract

Based on the structure of the rank-1 matrix and the different unfolding ways of the tensor, we present two types of structured tensors which contain the rank-1 tensors as special cases. We study some properties of the ranks and the best rank-γ approximations of the structured tensors. By using the upper-semicontinuity of the matrix rank, we show that for the structured tensors, there always exist the best rank-γ approximations. This can help one to better understand the sequential unfolding singular value decomposition (SVD) method for tensors proposed by J. Salmi et al. [IEEE Trans Signal Process, 2009, 57(12): 4719–4733] and offer a generalized way of low rank approximations of tensors. Moreover, we apply the structured tensors to estimate the upper and lower bounds of the best rank-1 approximations of the 3rd-order and 4th-order tensors, and to distinguish the well written and non-well written digits.

Keywords

Tensor / rank / singular value decomposition (SVD) / higher-order singular value decomposition / approximation

Cite this article

Download citation ▾
Xu KONG, Yaolin JIANG. Structured multi-way arrays and their applications. Front Math Chin, 2013, 8(2): 345‒369 https://doi.org/10.1007/s11464-013-0294-x

References

[1]
Chang Kungching, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520
[2]
Chang Kungching, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416-422
CrossRef Google scholar
[3]
Comon P. Tensor decompositions: state of the art and applications. In: Mcwhirter J G, Proudler I K, eds. Mathematics in Signal Processing V. Oxford: Oxford University Press, 2001, 1-24
[4]
De Lathauwer L. Signal Processing Based on Multilinear Algebra. <DissertationTip/>. Leuven: Katholieke Universiteit Leuven, 1997
[5]
De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21(4): 1253-1278
CrossRef Google scholar
[6]
De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-(R1, ...,RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21(4): 1324-1342
CrossRef Google scholar
[7]
De Silva V, Lim L H. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J Matrix Anal Appl, 2008, 30(3): 1084-1127
CrossRef Google scholar
[8]
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: John Hopkins University Press, 1996
[9]
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. New York: Springer-Verlag, 2001
[10]
Huang J, Wium H, Qvist K B, Esbensen K. Multi-way methods in image analysis: Relationships and applications. Chemom Intel Lab Syst, 2003, 66: 141-158
CrossRef Google scholar
[11]
Jiang Yaolin, Chen R M M, Huang Z L. A parallel approach for computing complex eigenvalue problems. IEICE T Fund Electr, 2000, E83A(10): 2000-2008
[12]
Jiang Yaolin, Wing O. On the spectra of waveform relaxation operators for circuit equations. IEICE T Fund Electr, 1998, E81A(4): 685-689
[13]
Kiers H A L. Towards a standardized notation and terminology in multiway analysis. J Chemometrics, 2000, 14: 105-122
CrossRef Google scholar
[14]
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Rev, 2009, 51(3): 455-500
CrossRef Google scholar
[15]
Kong X, Jiang Yaolin. Subtracting a best rank-1 approximation from p × p×2 (p≥2) tensors. Numer Linear Algebra Appl, 2012, 19(3): 503-523
CrossRef Google scholar
[16]
Oseledets I V, Tyrtyshnikov E E. Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J Sci Comput, 2009, 31(5): 3744-3759
CrossRef Google scholar
[17]
Qi Liqun. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324
CrossRef Google scholar
[18]
Qi Liqun. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface defined by them. J Symbolic Comput, 2005, 41: 1309-1327
[19]
Qi Liqun, Dai Huihui, Han Deren. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4(2): 349-364
CrossRef Google scholar
[20]
Qi Liqun, Sun Wenyu, Wang Yiju. Numerical multilinear algebra and its applications. Front Math China, 2007, 2: 501-526
CrossRef Google scholar
[21]
Salmi J, Richter A, Koivunen V. Sequential unfolding SVD for tensors with applications in array signal processing. IEEE Trans Signal Process, 2009, 57(12): 4719-4733
CrossRef Google scholar
[22]
Savas B, Richter A, Eldén L. Handwritten digit classification using higher order singular value decomposition. Pattern Recognition, 2007, 40: 993-1003
CrossRef Google scholar
[23]
Sun Jiantao, Zeng Huajun, Liu Huan, Lu Yuchang, Chen Zheng. CubeSVD: A novel approach to personalized web search. In: Proceedings of the 14th International Conference on World Wide Web. New York: ACM Press, 2005, 382-390
[24]
Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1996, 31: 279-311
CrossRef Google scholar
[25]
Zhang T, Golub G H. Rank-one approximation to high order tensor. SIAM J Matrix Anal Appl, 2001, 23(2): 534-550
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(343 KB)

Accesses

Citations

Detail

Sections
Recommended

/