Multiple G-Itô integral in G-expectation space

Panyu Wu

Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 465 -476.

PDF (125KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 465 -476. DOI: 10.1007/s11464-013-0288-8
Research Article
RESEARCH ARTICLE

Multiple G-Itô integral in G-expectation space

Author information +
History +
PDF (125KB)

Abstract

In 2007, Peng introduced Itô integral with respect to G-Brownian motion and the related Itô’s formula in G-expectation space. Motivated by the properties of multiple Wiener integral obtained by Itô in 1951, we introduce multiple G-Itô integral in G-expectation space, and investigate how to calculate it. Furthermore, We establish a relationship between Hermite polynomials and multiple G-Itô integrals.

Keywords

Sublinear expectation / G-Brownian motion / Itô integral / Hermite polynomial

Cite this article

Download citation ▾
Panyu Wu. Multiple G-Itô integral in G-expectation space. Front. Math. China, 2013, 8(2): 465-476 DOI:10.1007/s11464-013-0288-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheridito P, Soner H M, Touzi N. The multi-dimensional superreplication problem under gamma constraints. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22(5): 633-666

[2]

Denis L, Hu M, Peng S. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal, 2011, 34: 139-161

[3]

Engel D D. The Multiple Stochastic Integral, 1982, Providence: Amer Math Soc

[4]

Hu M, Peng S. On representation theorem of G-expectations and paths of G-Brownian motion. Acta Math Appl Sin Engl Ser, 2009, 25(3): 539-546

[5]

Itô K. Multiple Wiener integral. J Math Soc Japan, 1951, 3: 157-164

[6]

Li X, Peng S. Stopping times and related Itô calculus with G-Brownian motion. Stochastic Process Appl, 2011, 121: 1492-1508

[7]

Peng S. G-expectation, G-Brownian motion and related stochastic calculus of Itôo type. Stochastic Analysis and Applications, Abel Symposia, 2007, Berlin: Springer 541 567

[8]

Peng S. G-Brownian motion and dynamic risk measure under volatility uncertainty. arXiv: 0711.2834v1 [math.PR]

[9]

Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process Appl, 2008, 118: 2223-2253

[10]

Peng S. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations. Sci China Ser A, 2009, 52: 1391-1411

[11]

Peng S. Nonlinear expectations and stochastic calculus under uncertainty-with robust central limit theorem and G-Brownian motion. arXiv: 1002.4546v1 [math.PR]

[12]

Soner H M, Touzi N. Stochastic target problems, dynamic programming, and viscosity solutions. SIAM J Control Optim, 2002, 41(2): 404-424

[13]

Soner HM, Touzi N, Zhang J. Martingale representation theorem for the G-expectation. Stochastic Process Appl, 2011, 121(2): 265-287

[14]

Wiener N. The homogeneous chaos. Amer J Math, 1938, 60: 897-936

[15]

Xu J, Shang H, Zhang B. A Girsanov type theorem under G-framework. Stoch Anal Appl, 2011, 29: 386-406

AI Summary AI Mindmap
PDF (125KB)

739

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/