On weakly s-permutably embedded subgroups of finite groups (II)

Yujian Huang, Yangming Li, Shouhong Qiao

Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 855-867.

PDF(121 KB)
PDF(121 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 855-867. DOI: 10.1007/s11464-013-0287-9
Research Article
RESEARCH ARTICLE

On weakly s-permutably embedded subgroups of finite groups (II)

Author information +
History +

Abstract

Suppose that G is a finite group and H is a subgroup of G. H is said to be s-permutably embedded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-permutable subgroup of G; H is called weakly s-permutably embedded in G if there are a subnormal subgroup T of G and an s-permutably embedded subgroup Hse of G contained in H such that G = HT and H ∩ THse. In this paper, we continue the work of [Comm. Algebra, 2009, 37: 1086–1097] to study the influence of the weakly s-permutably embedded subgroups on the structure of finite groups, and we extend some recent results.

Keywords

s-Permutable subgroup / s-permutably embedded subgroup / weakly s-permutably embedded subgroup / p-nilpotent group

Cite this article

Download citation ▾
Yujian Huang, Yangming Li, Shouhong Qiao. On weakly s-permutably embedded subgroups of finite groups (II). Front. Math. China, 2013, 8(4): 855‒867 https://doi.org/10.1007/s11464-013-0287-9

References

[1.]
Ballester-Bolinches A, Pedraza-Aguilera M C. Sufficient conditions for supersolvability of finite groups. J Pure Appl Algebra, 1998, 127: 113-118
CrossRef Google scholar
[2.]
Gorenstein D. Finite Groups, 1980, New York-Chelsea: Harper and Row
[3.]
Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch Math, 2003, 80: 561-569
CrossRef Google scholar
[4.]
Huppert B. Endliche Gruppen I, 1967, New York-Berlin: Springer
CrossRef Google scholar
[5.]
Huppert B, Blackburn N. Finite Groups III, 1982, Berlin-New York: Springer-Verlag
CrossRef Google scholar
[6.]
Kegel O H. Sylow-Gruppen und abnormalteiler endlicher Gruppen. Math Z, 1962, 78: 205-221
CrossRef Google scholar
[7.]
Li Y, Qiao S, Wang Y. On weakly s-permutably embedded subgroups of finite groups. Comm Algebra, 2009, 37: 1086-1097
CrossRef Google scholar
[8.]
Li Y, Qiao S, Wang Y. A note on a result of Skiba. Sib Math J, 2009, 50: 467-473
CrossRef Google scholar
[9.]
Li Y, Wang Y, Wei H. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108: 283-298
CrossRef Google scholar
[10.]
Robinson D J S. A Course in the Theory of Groups, 1982, New York-Heidelberg-Berlin: Springer-Verlag
CrossRef Google scholar
[11.]
Schmid P. Subgroups permutable with all Sylow subgroups. J Algebra, 1998, 207: 285-293
CrossRef Google scholar
[12.]
Sergienko V I. A criterion for the p-solvability for finite groups. Math Notes, 1971, 9: 216-220
CrossRef Google scholar
[13.]
Shemetkov L, Skiba A N. On the τcϕ-hypercenter of finite groups. J Algebra, 2009, 322: 2106-2117
CrossRef Google scholar
[14.]
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315: 192-209
CrossRef Google scholar
[15.]
Wang Y. On c-normality and its properties. J Algebra, 1996, 180: 954-965
CrossRef Google scholar
[16.]
Wei X, Guo X. On s-permutable subgroups and p-nilpotency of finite groups. Comm Algebra, 2009, 37: 3410-3417
CrossRef Google scholar
[17.]
Zhang X, Li X. A criterion of p-nilpotency of finite groups. Comm Algebra, 2012, 40: 3652-3657
CrossRef Google scholar
AI Summary AI Mindmap
PDF(121 KB)

Accesses

Citations

Detail

Sections
Recommended

/