Exact construction of noncommutative instantons

Masashi HAMANAKA, Toshio NAKATSU

PDF(167 KB)
PDF(167 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1031-1046. DOI: 10.1007/s11464-013-0281-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Exact construction of noncommutative instantons

Author information +
History +

Abstract

We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.

Keywords

Instantons / noncommutative geometry

Cite this article

Download citation ▾
Masashi HAMANAKA, Toshio NAKATSU. Exact construction of noncommutative instantons. Front Math Chin, 2013, 8(5): 1031‒1046 https://doi.org/10.1007/s11464-013-0281-2

References

[1]
Aganagic M, Gopakumar R, Minwalla S, Strominger A. Unstable solitons in noncommutative gauge theory. J High Energy Phys, 2001, 0104: 001
[2]
Atiyah M F, Hitchin N J, Drinfeld V G, Manin Yu I. Construction of instantons. Phys Lett A, 1978, 65(3): 185-187
CrossRef Google scholar
[3]
Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S. Pseudoparticle solutions of the Yang-Mills equations. Phys Lett B, 1975, 59: 85-87
CrossRef Google scholar
[4]
Chu C-S. Non-commutative geometry from strings. hep-th/0502167
[5]
Corrigan E, Goddard P, Osborn H, Templeton S. Zeta function regularization and multi-instanton determinants. Nucl Phys B, 1979, 159: 469-496
CrossRef Google scholar
[6]
Dorey N, Hollowood T J, Khoze V V, Mattis M P. The calculus of many instantons. Phys Rep, 2002, 371: 231-459
CrossRef Google scholar
[7]
Douglas M R, Nekrasov N A. Noncommutative field theory. Rev Modern Phys, 2002, 73: 977-1029
CrossRef Google scholar
[8]
Furuuchi K. Instantons on noncommutative R4and projection operators. Progr Theoret Phys, 2000, 103: 1043-1068
CrossRef Google scholar
[9]
Furuuchi K. Equivalence of projections as gauge equivalence on noncommutative space. Comm Math Phys, 2001, 217: 579-593
CrossRef Google scholar
[10]
Furuuchi K. Topological charge of U(1) instantons on noncommutative R4. hep-th/0010006
[11]
Furuuchi K. Dp-D(p + 4) in noncommutative Yang-Mills. J High Energy Phys, 2001, 0103: 033
[12]
Hamanaka M. Atiyah-Drinfeld-Hitchin-Manin and Nahm Constructions of localized solitons in noncommutative gauge theories. Phys Rev D, 2002, 65: 085022
CrossRef Google scholar
[13]
Hamanaka M. Noncommutative solitons and D-branes. Ph D Thesis, University of Tokyo. 2003, hep-th/0303256
[14]
Hamanaka M. Noncommutative Ward’s conjecture and integrable systems. Nuclear Phys B, 2006, 741: 368-389
CrossRef Google scholar
[15]
Hamanaka M, Nakatsu T. ADHM construction and group actions for noncommutative instantons
[16]
Hamanaka M, Nakatsu T. Noncommutative instantons revisited. J Phys: Conference Ser (to appear)
[17]
Harvey J A. Komaba Lectures On Noncommutative Solitons And D-branes. hep-th/0102076
[18]
Ishikawa T, Kuroki S I, Sako A. Instanton number calculus on noncommutative R4. J High Energy Phys, 2002, 0208: 028
[19]
Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry. Phys Rep, 2002, 360: 353-421
CrossRef Google scholar
[20]
Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry, II. Phys Rep, 2002, 360: 422-465
CrossRef Google scholar
[21]
Lechtenfeld O. Noncommutative instantons and solitons. Fortschr Phys, 2004, 52: 596
CrossRef Google scholar
[22]
Maeda Y, Sako A. Noncommutative deformation of spinor zero mode and ADHM construction. J Math Phys, 2012, 53: 022303
CrossRef Google scholar
[23]
Mason L J, Woodhouse N M. Integrability, Self-Duality, and Twistor Theory. Oxford: Oxford Univ Press, 1996
[24]
Moyal J E. Quantum mechanics as a statistical theory. Proc Cambridge Phil Soc, 1949, 45: 99-124
CrossRef Google scholar
[25]
Nakajima H. Resolutions of moduli spaces of ideal instantons on R4. In: Topology, Geometry and Field Theory. Singapore World Sci, 1994, 129-136
[26]
Nakajima H.Lectures on Hilbert Schemes of Points on Surfaces. Providence: Amer Math Soc, 1999
[27]
Nakajima H, Yoshioka K. Instanton counting on blowup. I. Invent Math, 2005, 162: 313-355
CrossRef Google scholar
[28]
Nekrasov N A. Trieste Lectures on Solitons in Noncommutative Gauge Theories. hep-th/0011095
[29]
Nekrasov N A. Seiberg-Witten prepotential from instanton counting. Adv Theor Math Phys, 2004, 7: 831-864
[30]
Nekrasov N, Schwarz A. Instantons on noncommutative R4, and (2,0) superconformal six dimensional theory. Comm Math Phys, 1998, 198: 689-703
CrossRef Google scholar
[31]
Osborn H. Calculation of multi-instanton determinants. Nuclear Phys B, 1979, 159: 497-511
CrossRef Google scholar
[32]
Penrose R. Twistor algebra. J Math Phys, 1967, 8: 345-366
CrossRef Google scholar
[33]
Sako A. Instanton number of noncommutative U(n) gauge theory. J High Energy Phys, 2003, 04: 023
[34]
Schaposnik F A. Noncommutative solitons and instantons. Braz J Phys, 2004, 34: 1349-1357
CrossRef Google scholar
[35]
Seiberg N, Witten E. String theory and noncommutative geometry. J High Energy Phys, 1999, 9909: 032
[36]
Szabo R J. Quantum field theory on noncommutative spaces. Phys Rep, 2003, 378: 207-299
CrossRef Google scholar
[37]
Tian Y. Topological charge of ADHM instanton on ℝNC2×ℝ2. Modern Phys Lett A, 2004, 19: 1315-1317
CrossRef Google scholar
[38]
Tian Y, Zhu C J, Song X C. Topological charge of noncommutative ADHM instanton. Modern Phys Lett A, 2003, 18: 1691-1703
CrossRef Google scholar
[39]
Ward R S. Integrable and solvable systems, and relations among them. Philos Trans R Soc Lond Ser A, 1985, 315: 451-457
CrossRef Google scholar
[40]
Ward R S, Wells R O. Twistor Geometry and Field Theory. Cambridge: Cambridge Univ Press, 1990
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/