Exact construction of noncommutative instantons
Masashi HAMANAKA, Toshio NAKATSU
Exact construction of noncommutative instantons
We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.
Instantons / noncommutative geometry
[1] |
Aganagic M, Gopakumar R, Minwalla S, Strominger A. Unstable solitons in noncommutative gauge theory. J High Energy Phys, 2001, 0104: 001
|
[2] |
Atiyah M F, Hitchin N J, Drinfeld V G, Manin Yu I. Construction of instantons. Phys Lett A, 1978, 65(3): 185-187
CrossRef
Google scholar
|
[3] |
Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S. Pseudoparticle solutions of the Yang-Mills equations. Phys Lett B, 1975, 59: 85-87
CrossRef
Google scholar
|
[4] |
Chu C-S. Non-commutative geometry from strings. hep-th/0502167
|
[5] |
Corrigan E, Goddard P, Osborn H, Templeton S. Zeta function regularization and multi-instanton determinants. Nucl Phys B, 1979, 159: 469-496
CrossRef
Google scholar
|
[6] |
Dorey N, Hollowood T J, Khoze V V, Mattis M P. The calculus of many instantons. Phys Rep, 2002, 371: 231-459
CrossRef
Google scholar
|
[7] |
Douglas M R, Nekrasov N A. Noncommutative field theory. Rev Modern Phys, 2002, 73: 977-1029
CrossRef
Google scholar
|
[8] |
Furuuchi K. Instantons on noncommutative R4and projection operators. Progr Theoret Phys, 2000, 103: 1043-1068
CrossRef
Google scholar
|
[9] |
Furuuchi K. Equivalence of projections as gauge equivalence on noncommutative space. Comm Math Phys, 2001, 217: 579-593
CrossRef
Google scholar
|
[10] |
Furuuchi K. Topological charge of U(1) instantons on noncommutative R4. hep-th/0010006
|
[11] |
Furuuchi K. Dp-D(p + 4) in noncommutative Yang-Mills. J High Energy Phys, 2001, 0103: 033
|
[12] |
Hamanaka M. Atiyah-Drinfeld-Hitchin-Manin and Nahm Constructions of localized solitons in noncommutative gauge theories. Phys Rev D, 2002, 65: 085022
CrossRef
Google scholar
|
[13] |
Hamanaka M. Noncommutative solitons and D-branes. Ph D Thesis, University of Tokyo. 2003, hep-th/0303256
|
[14] |
Hamanaka M. Noncommutative Ward’s conjecture and integrable systems. Nuclear Phys B, 2006, 741: 368-389
CrossRef
Google scholar
|
[15] |
Hamanaka M, Nakatsu T. ADHM construction and group actions for noncommutative instantons
|
[16] |
Hamanaka M, Nakatsu T. Noncommutative instantons revisited. J Phys: Conference Ser (to appear)
|
[17] |
Harvey J A. Komaba Lectures On Noncommutative Solitons And D-branes. hep-th/0102076
|
[18] |
Ishikawa T, Kuroki S I, Sako A. Instanton number calculus on noncommutative R4. J High Energy Phys, 2002, 0208: 028
|
[19] |
Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry. Phys Rep, 2002, 360: 353-421
CrossRef
Google scholar
|
[20] |
Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry, II. Phys Rep, 2002, 360: 422-465
CrossRef
Google scholar
|
[21] |
Lechtenfeld O. Noncommutative instantons and solitons. Fortschr Phys, 2004, 52: 596
CrossRef
Google scholar
|
[22] |
Maeda Y, Sako A. Noncommutative deformation of spinor zero mode and ADHM construction. J Math Phys, 2012, 53: 022303
CrossRef
Google scholar
|
[23] |
Mason L J, Woodhouse N M. Integrability, Self-Duality, and Twistor Theory. Oxford: Oxford Univ Press, 1996
|
[24] |
Moyal J E. Quantum mechanics as a statistical theory. Proc Cambridge Phil Soc, 1949, 45: 99-124
CrossRef
Google scholar
|
[25] |
Nakajima H. Resolutions of moduli spaces of ideal instantons on R4. In: Topology, Geometry and Field Theory. Singapore World Sci, 1994, 129-136
|
[26] |
Nakajima H.Lectures on Hilbert Schemes of Points on Surfaces. Providence: Amer Math Soc, 1999
|
[27] |
Nakajima H, Yoshioka K. Instanton counting on blowup. I. Invent Math, 2005, 162: 313-355
CrossRef
Google scholar
|
[28] |
Nekrasov N A. Trieste Lectures on Solitons in Noncommutative Gauge Theories. hep-th/0011095
|
[29] |
Nekrasov N A. Seiberg-Witten prepotential from instanton counting. Adv Theor Math Phys, 2004, 7: 831-864
|
[30] |
Nekrasov N, Schwarz A. Instantons on noncommutative R4, and (2,0) superconformal six dimensional theory. Comm Math Phys, 1998, 198: 689-703
CrossRef
Google scholar
|
[31] |
Osborn H. Calculation of multi-instanton determinants. Nuclear Phys B, 1979, 159: 497-511
CrossRef
Google scholar
|
[32] |
Penrose R. Twistor algebra. J Math Phys, 1967, 8: 345-366
CrossRef
Google scholar
|
[33] |
Sako A. Instanton number of noncommutative U(n) gauge theory. J High Energy Phys, 2003, 04: 023
|
[34] |
Schaposnik F A. Noncommutative solitons and instantons. Braz J Phys, 2004, 34: 1349-1357
CrossRef
Google scholar
|
[35] |
Seiberg N, Witten E. String theory and noncommutative geometry. J High Energy Phys, 1999, 9909: 032
|
[36] |
Szabo R J. Quantum field theory on noncommutative spaces. Phys Rep, 2003, 378: 207-299
CrossRef
Google scholar
|
[37] |
Tian Y. Topological charge of ADHM instanton on
CrossRef
Google scholar
|
[38] |
Tian Y, Zhu C J, Song X C. Topological charge of noncommutative ADHM instanton. Modern Phys Lett A, 2003, 18: 1691-1703
CrossRef
Google scholar
|
[39] |
Ward R S. Integrable and solvable systems, and relations among them. Philos Trans R Soc Lond Ser A, 1985, 315: 451-457
CrossRef
Google scholar
|
[40] |
Ward R S, Wells R O. Twistor Geometry and Field Theory. Cambridge: Cambridge Univ Press, 1990
CrossRef
Google scholar
|
/
〈 | 〉 |