Exact construction of noncommutative instantons

Masashi Hamanaka , Toshio Nakatsu

Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1031 -1046.

PDF (167KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1031 -1046. DOI: 10.1007/s11464-013-0281-2
Research Article
RESEARCH ARTICLE

Exact construction of noncommutative instantons

Author information +
History +
PDF (167KB)

Abstract

We discuss the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of U(N) instantons in noncommutative (NC) space and give some exact instanton solutions for various noncommutative settings. We also present a new formula which is crucial to show an origin of the instanton number for U(1) and to prove the one-to-one correspondence between moduli spaces of the noncommutative instantons and the ADHM data.

Keywords

Instantons / noncommutative geometry

Cite this article

Download citation ▾
Masashi Hamanaka, Toshio Nakatsu. Exact construction of noncommutative instantons. Front. Math. China, 2013, 8(5): 1031-1046 DOI:10.1007/s11464-013-0281-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aganagic M, Gopakumar R, Minwalla S, Strominger A. Unstable solitons in noncommutative gauge theory. J High Energy Phys, 2001, 0104: 001

[2]

Atiyah M F, Hitchin N J, Drinfeld V G, Manin Yu I. Construction of instantons. Phys Lett A, 1978, 65(3): 185-187

[3]

Belavin A A, Polyakov A M, Schwartz A S, Tyupkin Y S. Pseudoparticle solutions of the Yang-Mills equations. Phys Lett B, 1975, 59: 85-87

[4]

Chu C-S. Non-commutative geometry from strings. hep-th/0502167

[5]

Corrigan E, Goddard P, Osborn H, Templeton S. Zeta function regularization and multi-instanton determinants. Nucl Phys B, 1979, 159: 469-496

[6]

Dorey N, Hollowood T J, Khoze V V, Mattis M P. The calculus of many instantons. Phys Rep, 2002, 371: 231-459

[7]

Douglas M R, Nekrasov N A. Noncommutative field theory. Rev Modern Phys, 2002, 73: 977-1029

[8]

Furuuchi K. Instantons on noncommutative ℝ4 and projection operators. Progr Theoret Phys, 2000, 103: 1043-1068

[9]

Furuuchi K. Equivalence of projections as gauge equivalence on noncommutative space. Comm Math Phys, 2001, 217: 579-593

[10]

Furuuchi K. Topological charge of U(1) instantons on noncommutative ℝ4. hep-th/0010006

[11]

Furuuchi K. Dp-D(p + 4) in noncommutative Yang-Mills. J High Energy Phys, 2001, 0103: 033

[12]

Hamanaka M. Atiyah-Drinfeld-Hitchin-Manin and Nahm Constructions of localized solitons in noncommutative gauge theories. Phys Rev D, 2002, 65: 085022

[13]

Hamanaka M. Noncommutative solitons and D-branes, 2003

[14]

Hamanaka M. Noncommutative Ward’s conjecture and integrable systems. Nuclear Phys B, 2006, 741: 368-389

[15]

Hamanaka M, Nakatsu T. ADHM construction and group actions for noncommutative instantons

[16]

Hamanaka M, Nakatsu T. Noncommutative instantons revisited. J Phys: Conference Ser (to appear)

[17]

Harvey J A. Komaba Lectures on Noncommutative Solitons and D-branes. hep-th/0102076

[18]

Ishikawa T, Kuroki S I, Sako A. Instanton number calculus on noncommutative ℝ4. J High Energy Phys, 2002, 0208: 028

[19]

Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry. Phys Rep, 2002, 360: 353-421

[20]

Konechny A, Schwarz A. Introduction to M(atrix) theory and noncommutative geometry, II. Phys Rep, 2002, 360: 422-465

[21]

Lechtenfeld O. Noncommutative instantons and solitons. Fortschr Phys, 2004, 52: 596

[22]

Maeda Y, Sako A. Noncommutative deformation of spinor zero mode and ADHM construction. J Math Phys, 2012, 53: 022303

[23]

Mason L J, Woodhouse N M. Integrability, Self-Duality, and Twistor Theory, 1996, Oxford: Oxford Univ Press

[24]

Moyal J E. Quantum mechanics as a statistical theory. Proc Cambridge Phil Soc, 1949, 45: 99-124

[25]

Nakajima H. Resolutions of moduli spaces of ideal instantons on ℝ4. Topology, Geometry and Field Theory. Singapore World Sci, 1994 129 136

[26]

Nakajima H. Lectures on Hilbert Schemes of Points on Surfaces, 1999, Providence: Amer Math Soc

[27]

Nakajima H, Yoshioka K. Instanton counting on blowup. I. Invent Math, 2005, 162: 313-355

[28]

Nekrasov N A. Trieste Lectures on Solitons in Noncommutative Gauge Theories. hep-th/0011095

[29]

Nekrasov N A. Seiberg-Witten prepotential from instanton counting. Adv Theor Math Phys, 2004, 7: 831-864

[30]

Nekrasov N, Schwarz A. Instantons on noncommutative ℝ4, and (2,0) superconformal six dimensional theory. Comm Math Phys, 1998, 198: 689-703

[31]

Osborn H. Calculation of multi-instanton determinants. Nuclear Phys B, 1979, 159: 497-511

[32]

Penrose R. Twistor algebra. J Math Phys, 1967, 8: 345-366

[33]

Sako A. Instanton number of noncommutative U(n) gauge theory. J High Energy Phys, 2003, 04: 023

[34]

Schaposnik F A. Noncommutative solitons and instantons. Braz J Phys, 2004, 34: 1349-1357

[35]

Seiberg N, Witten E. String theory and noncommutative geometry. J High Energy Phys, 1999, 9909: 032

[36]

Szabo R J. Quantum field theory on noncommutative spaces. Phys Rep, 2003, 378: 207-299

[37]

Tian Y. Topological charge of ADHM instanton on ℝNC 2 × ℝ2. Modern Phys Lett A, 2004, 19: 1315-1317

[38]

Tian Y, Zhu C J, Song X C. Topological charge of noncommutative ADHM instanton. Modern Phys Lett A, 2003, 18: 1691-1703

[39]

Ward R S. Integrable and solvable systems, and relations among them. Philos Trans R Soc Lond Ser A, 1985, 315: 451-457

[40]

Ward R S, Wells R O. Twistor Geometry and Field Theory, 1990, Cambridge: Cambridge Univ Press

AI Summary AI Mindmap
PDF (167KB)

618

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/