Classification of discrete equations linearizable by point transformation on a square lattice

Christian SCIMITERNA, Decio LEVI

PDF(97 KB)
PDF(97 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1067-1076. DOI: 10.1007/s11464-013-0280-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Classification of discrete equations linearizable by point transformation on a square lattice

Author information +
History +

Abstract

We provide a complete set of linearizability conditions for nonlinear partial difference equations defined on four points and, using them, we classify all linearizable multilinear partial difference equations defined on four points up to a Möbious transformation.

Keywords

Partial Difference equation / Linearizable equation / Point transformation

Cite this article

Download citation ▾
Christian SCIMITERNA, Decio LEVI. Classification of discrete equations linearizable by point transformation on a square lattice. Front Math Chin, 2013, 8(5): 1067‒1076 https://doi.org/10.1007/s11464-013-0280-3

References

[1]
Levi D, Scimiterna C. Linearizability of nonlinear equations on a quad-graph by a point, two points and generalized Hopf-Cole transformations. SIGMA, 2011, 7: 079
[2]
Levi D, Scimiterna C. Linearization through symmetries for discrete equations. arXiv: 1302.0154
[3]
Scimiterna C, Levi D. C-Integrability test for discrete equations via multiple scale expansions. SIGMA, 2010, 6: 070
[4]
Scimiterna C, Levi D. Three points partial difference equations linearizable by local and nonlocal transformations. J Phys A: Math Theor, 2013, 46: 025205
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(97 KB)

Accesses

Citations

Detail

Sections
Recommended

/