Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrödinger equation

Hideshi Yamane

Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1077 -1083.

PDF (99KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (5) : 1077 -1083. DOI: 10.1007/s11464-013-0279-9
Research Article
Hideshi YAMANE

Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrödinger equation

Author information +
History +
PDF (99KB)

Abstract

We report our recent result about the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation of Ablowitz-Ladik. The leading term is a sum of two terms that oscillate with decay of order t−1/2.

Keywords

Discrete nonlinear Schrödinger equation / Ablowitz-Ladik model / asymptotics / inverse scattering transform / nonlinear steepest descent

Cite this article

Download citation ▾
Hideshi Yamane. Asymptotic behavior of solutions of defocusing integrable discrete nonlinear Schrödinger equation. Front. Math. China, 2013, 8(5): 1077-1083 DOI:10.1007/s11464-013-0279-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M J, Ladik J F. Nonlinear differential-difference equations. J Math Phys, 1975, 16: 598-603

[2]

Ablowitz M J, Ladik J F. Nonlinear differential-difference equations and Fourier analysis. J Math Phys, 1976, 17: 1011-1018

[3]

Ablowitz M J, Newell A C. The decay of the continuous spectrum for solutions of the Korteweg-de Vries equation. J Math Phys, 1973, 14: 1277-1284

[4]

Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schrödinger Systems, 2004, Cambridge: Cambridge University Press

[5]

Ablowitz M J, Biondini G, Prinari B. Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions. Inverse Problems, 2007, 23: 1711-1758

[6]

Deift P A. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, 1998, New York: Courant Institute of Mathematical Sciences/Providence: Amer Math Soc

[7]

Deift P A, Its A R, Zhou X. Fokas A S, Zakharov V E. Long-time asymptotics for integrable nonlinear wave equations. Important Developments in Soliton Theory, 1980–1990, 1993, Berlin: Springer-Verlag 181 204

[8]

Deift P A, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation. Ann of Math (2), 1993, 137(2): 295-368

[9]

Kamvissis S. On the long time behavior of the doubly infinite Toda lattice under initial data decaying at infinity. Comm Math Phys, 1993, 153(3): 479-519

[10]

Krüger H, Teschl G. Long-time asymptotics of the Toda lattice in the soliton region. Math Z, 2009, 262(3): 585-602

[11]

Krüger H, Teschl G. Long-time asymptotics of the Toda lattice for decaying initial data revisited. Rev Math Phys, 2009, 21(1): 61-109

[12]

Manakov S V. Nonlinear Fraunhofer diffraction. Zh Eksp Teor Fiz, 1973, 65: 1392-1398

[13]

Michor J. On the spatial asymptotics of solutions of the Ablowitz-Ladik hierarchy. Proc Amer Math Soc, 2010, 138: 4249-4258

[14]

Novokshënov V Yu. Asymptotic behavior as t → ∞ of the solution of the Cauchy problem for a nonlinear differential-difference Schrödinger equation. Differentsialnye Uravneniya, 1985, 21(11): 1915-1926

[15]

Novokshënov V Y, Habibullin I T. Nonlinear differential-difference schemes that are integrable by the inverse scattering method. Asymptotic behavior of the solution as t→∞. Dokl Akad Nauk SSSR, 1981, 257(3): 543-547

[16]

Yamane H. Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. arXiv: 1112.0919v2

[17]

Zakharov V E, Manakov S V. Asymptotic behavior of nonlinear wave systems integrated by the inverse method. Zh Eksp Teor Fiz, 1976, 71: 203-215

AI Summary AI Mindmap
PDF (99KB)

867

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/