Limit theorems of continuous-time random walks with tails

Yuqiang LI

PDF(170 KB)
PDF(170 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 371-391. DOI: 10.1007/s11464-013-0275-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Limit theorems of continuous-time random walks with tails

Author information +
History +

Abstract

We study the functional limits of continuous-time random walks (CTRWs) with tails under certain conditions. We find that the scaled CTRWs with tails converge weakly to an α-stable Lévy process in D([0, 1]) with M1-topology but the corresponding scaled CTRWs converge weakly to the same limit in D([0, 1]) with J1-topology.

Keywords

Weak convergence / J1-topology / M1-topology / stable Lévy process

Cite this article

Download citation ▾
Yuqiang LI. Limit theorems of continuous-time random walks with tails. Front Math Chin, 2013, 8(2): 371‒391 https://doi.org/10.1007/s11464-013-0275-0

References

[1]
Bardina X, Jolis M. Weak approximation of the Brownian sheet from a Poisson process in the plane. Bernoulli, 2000, 6: 653-665
CrossRef Google scholar
[2]
Becker-Kern P, Meerschaert M, Scheffler H. Limit theorems for coupled continuous time random walks. Ann Probab, 2004, 32: 730-756
[3]
Bingham N. Limit theorem for occupation times of Markov processes. Z Wahrs Ver Geb, 1971, 17: 1-22
CrossRef Google scholar
[4]
Dai H, Li Y. Approximation to sub-Gaussian processes. Acta Math Sci Ser B Engl Ed, 2011, 31(5): 1945-1958
[5]
Delgado R, Jolis M. Weak approximation for a class of Gaussion processes. J Appl Probab, 2000, 37: 400-407
CrossRef Google scholar
[6]
Feller W. An Introduce to Probability Theory and Its Applications. 3rd ed. New York: Wiley, 1967
[7]
Gihman I, Skorokhod A. The Theory of Stochastic Processes I. New York: Springer, 1974
CrossRef Google scholar
[8]
Meerschaert M, Scheffler H. Limit theorems for continuous-time random walks with infinite mean waiting times. J Appl Probab, 2004, 41: 623-638
CrossRef Google scholar
[9]
Montroll E, Weiss G. Random walks on lattices. II. J Math Phys, 1965, 6: 167-181
CrossRef Google scholar
[10]
Samorodnitsky G, Taqqu M. Stable Non-Gaussian Random Processed. New York: Chapman and Hall, 1994
[11]
Sato K. Lévy processes and Infinitely Divisible Distributions. Cambridge: Cambridge University Press, 1999
[12]
Scalas E, Gorenflo R, Mainardi F. Fractional calculus and continuous-time finance. Physica A, 2000, 284: 376-384
CrossRef Google scholar
[13]
Stroock D. Topics in Stochastic Differential Equations. Tata Institute of Fundamental Research, Bombay. Berlin: Springer-Verlag, 1982.
[14]
Weiss G. Aspects and Applications of the Random Walk. Amsterdam: North-Holland, 1994
[15]
Whitt W. Stochastic Processes Limits. New York: Springer, 2002
[16]
Woodroofe M. Nonlinear Renewal Theory in Sequential Analysis. Philadelphia: SIAM, 1982
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(170 KB)

Accesses

Citations

Detail

Sections
Recommended

/