Double Hilbert transform on D(?2)

Xiaona CUI, Rui WANG, Dunyan YAN

PDF(154 KB)
PDF(154 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 783-799. DOI: 10.1007/s11464-013-0269-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Double Hilbert transform on D(?2)

Author information +
History +

Abstract

We introduce a space DHH=D(2)H2H1D(2), where D(2) is the testing function space whose functions are infinitely differentiable and have bounded support, and H2H1D(2) is the space the double Hilbert transform acting on the testing function space.We prove that the double Hilbert transform is a homeomorphism from DHH onto itself.

Keywords

Double Hilbert transform / vanishing moments / homeomorphism

Cite this article

Download citation ▾
Xiaona CUI, Rui WANG, Dunyan YAN. Double Hilbert transform on D(2). Front Math Chin, 2013, 8(4): 783‒799 https://doi.org/10.1007/s11464-013-0269-y

References

[1]
Cui X, Hu Y, Yan D. Double Hilbert transform on product functions and Bedrosian identity. preprint
[2]
Fefferman C. Estimates for double Hilbert transforms. Studia Math, 1974, 51: 1-15
[3]
Fefferman R. Harmonic analysis on product spaces. Ann Math, 1987, 126: 109-130
CrossRef Google scholar
[4]
Fefferman R, Stein E M. Singular integrals on product spaces. Adv Math, 1982, 45: 117-143
CrossRef Google scholar
[5]
Grafakos L. Classical and Modern Fourier Analysis. Upper Saddle River: Prentice Hall, 2003
[6]
Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics, 1972, 37(3): 507-517
CrossRef Google scholar
[7]
Nabighian M N. Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations. Geophysics, 1984, 49(6): 780-786
CrossRef Google scholar
[8]
Pandey J N. The Hilbert Transform of Schwartz Distributions and Applications. New York: A Wiley-Interscience Publication, 1996
[9]
Schraml J, Bellama J M. Two-Dimensional NMR Spectroscopy. New York: Wiley, 1988
[10]
Ruch D K. Vanishing moments for scaling vectors. Int J Math Math Sci, 2004, 36: 1897-1908
CrossRef Google scholar
[11]
Xu Y, Yan D. The Hilbert transform of product functions and the Bedrosian identity. Proc Amer Math Soc, 2006, 134: 2719-2728
CrossRef Google scholar
[12]
Yang L. A distribution space for Hilbert transform and its applications. Sci China Ser A, 2008, 51(12): 2217-2230
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(154 KB)

Accesses

Citations

Detail

Sections
Recommended

/