Mixed principal eigenvalues in dimension one

Mu-Fa CHEN, Lingdi WANG, Yuhui ZHANG

PDF(203 KB)
PDF(203 KB)
Front. Math. China ›› DOI: 10.1007/s11464-013-0229-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Mixed principal eigenvalues in dimension one

Author information +
History +

Abstract

This is one of a series of papers exploring the stability speed of one-dimensional stochastic processes. The present paper emphasizes on the principal eigenvalues of elliptic operators. The eigenvalue is just the best constant in the L2-Poincaré inequality and describes the decay rate of the corresponding diffusion process. We present some variational formulas for the mixed principal eigenvalues of the operators. As applications of these formulas, we obtain case by case explicit estimates, a criterion for positivity, and an approximating procedure for the eigenvalue.

Keywords

Eigenvalue / variational formula / explicit estimate / positivity criterion / approximating procedure

Cite this article

Download citation ▾
Mu-Fa CHEN, Lingdi WANG, Yuhui ZHANG. Mixed principal eigenvalues in dimension one. Front Math Chin, https://doi.org/10.1007/s11464-013-0229-6

References

[1]
Chen M F. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci China Ser A, 1999, 42(8): 805-815
CrossRef Google scholar
[2]
Chen M F. Explicit bounds of the first eigenvalue. Sci China Ser A, 2000, 43(10): 1051-1059
CrossRef Google scholar
[3]
Chen M F. Variational formulas and approximation theorems for the first eigenvalue in dimension one. Sci China Ser A, 2001, 44(4): 409-418
CrossRef Google scholar
[4]
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. New York: Springer, 2005
[5]
Chen M F. Speed of stability for birth-death process. Front Math China, 2010, 5(3): 379-516
CrossRef Google scholar
[6]
Chen M F. General estimate of the first eigenvalue on manifolds. Front Math China, 2011, 6(6): 1025-1043
CrossRef Google scholar
[7]
Chen M F. Basic estimates and stability rate for one-dimensional diffusion. In: Probability Approximations and Beyond. Lecture Notes in Statistics, Vol 205. 2012, 75-99
CrossRef Google scholar
[8]
Chen M F. Lower bounds of principle eigenvalue in dimension one. Front Math China, 2012, 7(4): 645-668
CrossRef Google scholar
[9]
Chen M F, Wang F Y. Estimation of spectral gap for elliptic operators. Trans Amer Math Soc, 1997, 349(3): 1239-1267. See also book [4] for some supplement: http://math.bnu.edu.cn/~chenmf/main_eng.htm
[10]
Wang J. First eigenvalue of one-dimensional diffusion processes. Elect Commun Probab, 2009, 14: 232-244
CrossRef Google scholar
[11]
Zettl A. Sturm-Liouville Theory. Providence: Amer Math Soc, 2005

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/