Boundedness of Calderón-Zygmund operators with finite non-doubling measures
Dachun YANG, Dongyong YANG
Boundedness of Calderón-Zygmund operators with finite non-doubling measures
Let μ be a nonnegative Radon measure on which satisfies the polynomial growth condition that there exist positive constants C0 and n ∈ (0, d] such that, for all x ∈ and r>0, μ(B(x, r))≤, where B(x, r) denotes the open ball centered at x and having radius r. In this paper, we show that, if μ()<∞, then the boundedness of a Calderón-Zygmund operator T on L2(μ) is equivalent to that of T from the localized atomic Hardy space h1(μ) to L1,∞(μ) or from h1(μ) to L1(μ).
Calderón-Zygmund operator / localized atomic Hardy space / nondoubling measure
[1] |
Chen W, Meng Y, Yang D C. Calderón-Zygmund operators on Hardy spaces without the doubling condition. Proc Amer Math Soc, 2005, 133: 2671-2680
CrossRef
Google scholar
|
[2] |
Fu X, Hu G, Yang D C. A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces. Acta Math Sin (Engl Ser), 2007, 23: 449-456
CrossRef
Google scholar
|
[3] |
Hu G, Yang D C, Yang D Y. Weighted estimates for commutators of singular integral operators with non-doubling measures. Sci China Ser A, 2007, 50: 1621-1641
CrossRef
Google scholar
|
[4] |
Hu G, Yang D C, Yang D Y. h1, bmo, blo and Littlewood-Paley g-functions with non-doubling measures. Rev Mat Iberoam, 2009, 25: 595-667
CrossRef
Google scholar
|
[5] |
Liu S, Yang D C, Yang D Y. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations. J Math Anal Appl, 2012, 386: 258-272
CrossRef
Google scholar
|
[6] |
Nazarov F, Treil S, Volberg A. Weak type estimates and Cotlar inequalities for Calderón- Zygmund operators on nonhomogeneous spaces. Int Math Res Not, 1998: 463-487
CrossRef
Google scholar
|
[7] |
Nazarov F, Treil S, Volberg A. The Tb-theorem on non-homogeneous spaces. Acta Math, 2003, 190: 151-239
CrossRef
Google scholar
|
[8] |
Tolsa X.BMO, H1, and Calderón-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89-149
CrossRef
Google scholar
|
[9] |
Tolsa X. Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv Math, 2001, 164: 57-116
CrossRef
Google scholar
|
[10] |
Tolsa X. Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math, 2003, 190: 105-149
CrossRef
Google scholar
|
[11] |
Tolsa X. The space H1 for non-doubling measures in terms of a grand maximal operators. Trans Amer Math Soc, 2003, 355: 315-348
CrossRef
Google scholar
|
[12] |
Tolsa X. The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Amer J Math, 2004, 126: 523-567
CrossRef
Google scholar
|
[13] |
Yang D C, Yang D Y. Boundedness of linear operators via atoms on Hardy spaces with non-doubling measures. Georgian Math J, 2011, 18: 377-397
|
[14] |
Yang D C, Yang D Y, Hu G. The Hardy Space H1 with Non-doubling Measures and Their Applications. Lecture Notes in Mathematics, Vol 2084. Berlin: Springer-Verlag, 2013
|
/
〈 | 〉 |