Boundedness of Calderón-Zygmund operators with finite non-doubling measures

Dachun Yang , Dongyong Yang

Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 961 -971.

PDF (126KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 961 -971. DOI: 10.1007/s11464-013-0210-4
Research Article
RESEARCH ARTICLE

Boundedness of Calderón-Zygmund operators with finite non-doubling measures

Author information +
History +
PDF (126KB)

Abstract

Let µ be a nonnegative Radon measure on ℝ d which satisfies the polynomial growth condition that there exist positive constants C0 and n ∈ (0, d] such that, for all x ∈ ℝ d and r > 0, µ(B(x, r)) ⩽ C0 r n, where B(x, r) denotes the open ball centered at x and having radius r. In this paper, we show that, if µ(ℝ d) < ∞, then the boundedness of a Calderón-Zygmund operator T on L2(µ) is equivalent to that of T from the localized atomic Hardy space h1(µ) to L1,∞(µ) or from h1(µ) to L1(µ).

Keywords

Calderón-Zygmund operator / localized atomic Hardy space / non-doubling measure

Cite this article

Download citation ▾
Dachun Yang, Dongyong Yang. Boundedness of Calderón-Zygmund operators with finite non-doubling measures. Front. Math. China, 2013, 8(4): 961-971 DOI:10.1007/s11464-013-0210-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen W, Meng Y, Yang D C. Calderón-Zygmund operators on Hardy spaces without the doubling condition. Proc Amer Math Soc, 2005, 133: 2671-2680

[2]

Fu X, Hu G, Yang D C. A remark on the boundedness of Calderón-Zygmund operators in non-homogeneous spaces. Acta Math Sin (Engl Ser), 2007, 23: 449-456

[3]

Hu G, Yang D C, Yang D Y. Weighted estimates for commutators of singular integral operators with non-doubling measures. Sci China Ser A, 2007, 50: 1621-1641

[4]

Hu G, Yang D C, Yang D Y. h1, bmo, blo and Littlewood-Paley g-functions with non-doubling measures. Rev Mat Iberoam, 2009, 25: 595-667

[5]

Liu S, Yang D C, Yang D Y. Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: equivalent characterizations. J Math Anal Appl, 2012, 386: 258-272

[6]

Nazarov F, Treil S, Volberg A. Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int Math Res Not, 1998 463 487

[7]

Nazarov F, Treil S, Volberg A. The Tb-theorem on non-homogeneous spaces. Acta Math, 2003, 190: 151-239

[8]

Tolsa X. BMO, H1, and Calderón-Zygmund operators for non doubling measures. Math Ann, 2001, 319: 89-149

[9]

Tolsa X. Littlewood-Paley theory and the T(1) theorem with non-doubling measures. Adv Math, 2001, 164: 57-116

[10]

Tolsa X. Painlevé’s problem and the semiadditivity of analytic capacity. Acta Math, 2003, 190: 105-149

[11]

Tolsa X. The space H1 for non-doubling measures in terms of a grand maximal operators. Trans Amer Math Soc, 2003, 355: 315-348

[12]

Tolsa X. The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Amer J Math, 2004, 126: 523-567

[13]

Yang D C, Yang D Y. Boundedness of linear operators via atoms on Hardy spaces with non-doubling measures. Georgian Math J, 2011, 18: 377-397

[14]

Yang D C, Yang D Y, Hu G. The Hardy Space H1 with Non-doubling Measures and Their Applications, 2013, Berlin: Springer-Verlag

AI Summary AI Mindmap
PDF (126KB)

757

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/