Best rank one approximation of real symmetric tensors can be chosen symmetric

Shmuel FRIEDLAND

PDF(186 KB)
PDF(186 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 19-40. DOI: 10.1007/s11464-012-0262-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Best rank one approximation of real symmetric tensors can be chosen symmetric

Author information +
History +

Abstract

We show that a best rank one approximation to a real symmetric tensor, which in principle can be nonsymmetric, can be chosen symmetric. Furthermore, a symmetric best rank one approximation to a symmetric tensor is unique if the tensor does not lie on a certain real algebraic variety.

Keywords

Symmetric tensor / rank one approximation of tensors / uniqueness of rank one approximation

Cite this article

Download citation ▾
Shmuel FRIEDLAND. Best rank one approximation of real symmetric tensors can be chosen symmetric. Front Math Chin, 2013, 8(1): 19‒40 https://doi.org/10.1007/s11464-012-0262-x

References

[1]
Chen B, He S, Li Z, Zhang S. Maximum block improvement and polynomial optimization. SIAM J Optim, 2012, 22: 87-107
CrossRef Google scholar
[2]
Defant A, Floret K. Tensor Norms and Operator Ideals. Amsterdam: North-Holland, 1993
[3]
Friedland S. Inverse eigenvalue problems. Linear Algebra Appl, 1977, 17: 15-51
CrossRef Google scholar
[4]
Friedland S. Variation of tensor powers and spectra. Linear Multilinear Algebra, 1982, 12: 81-98
CrossRef Google scholar
[5]
Friedland S, Robbin J, Sylvester J. On the crossing rule. Comm Pure Appl Math, 1984, 37: 19-37
CrossRef Google scholar
[6]
Golub G H, Van Loan C F. Matrix Computation. 3rd ed. Baltimore: John Hopkins Univ Press, 1996
[7]
Kolda T G. On the best rank-k approximation of a symmetric tensor. Householder, 2011
[8]
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proc IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, (CAMSAP ’05), 1. 2005, 129-132

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(186 KB)

Accesses

Citations

Detail

Sections
Recommended

/