Best rank one approximation of real symmetric tensors can be chosen symmetric

Shmuel Friedland

Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 19-40.

PDF(186 KB)
Front. Math. China All Journals
PDF(186 KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 19-40. DOI: 10.1007/s11464-012-0262-x
Research Article
RESEARCH ARTICLE

Best rank one approximation of real symmetric tensors can be chosen symmetric

Author information +
History +

Abstract

We show that a best rank one approximation to a real symmetric tensor, which in principle can be nonsymmetric, can be chosen symmetric. Furthermore, a symmetric best rank one approximation to a symmetric tensor is unique if the tensor does not lie on a certain real algebraic variety.

Keywords

Symmetric tensor / rank one approximation of tensors / uniqueness of rank one approximation

Cite this article

Download citation ▾
Shmuel Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric. Front. Math. China, 2012, 8(1): 19‒40 https://doi.org/10.1007/s11464-012-0262-x
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Chen B., He S., Li Z., Zhang S.. Maximum block improvement and polynomial optimization. SIAM J Optim, 2012, 22: 87-107
CrossRef Google scholar
[2.]
Defant A., Floret K.. Tensor Norms and Operator Ideals, 1993, Amsterdam: North-Holland
[3.]
Friedland S.. Inverse eigenvalue problems. Linear Algebra Appl, 1977, 17: 15-51
CrossRef Google scholar
[4.]
Friedland S.. Variation of tensor powers and spectra. Linear Multilinear Algebra, 1982, 12: 81-98
CrossRef Google scholar
[5.]
Friedland S., Robbin J., Sylvester J.. On the crossing rule. Comm Pure Appl Math, 1984, 37: 19-37
CrossRef Google scholar
[6.]
Golub G. H., Van Loan C. F.. Matrix Computation, 1996 3rd ed. Baltimore: John Hopkins Univ Press
[7.]
Kolda T G. On the best rank-k approximation of a symmetric tensor. Householder, 2011
[8.]
Lim L -H. Singular values and eigenvalues of tensors: a variational approach. In: Proc IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, (CAMSAP ’05), 1. 2005, 129–132
AI Summary AI Mindmap
PDF(186 KB)

996

Accesses

33

Citations

Detail

Sections
Recommended

/