Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor

Liping ZHANG

PDF(127 KB)
PDF(127 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 141-153. DOI: 10.1007/s11464-012-0260-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor

Author information +
History +

Abstract

An algorithm for finding the largest singular value of a nonnegative rectangular tensor was recently proposed by Chang, Qi, and Zhou [J. Math. Anal. Appl., 2010, 370: 284–294]. In this paper, we establish a linear convergence rate of the Chang-Qi-Zhou algorithm under a reasonable assumption.

Keywords

Singular value / nonnegative tensor / rectangular tensor / algorithm / convergence

Cite this article

Download citation ▾
Liping ZHANG. Linear convergence of an algorithm for largest singular value of a nonnegative rectangular tensor. Front Math Chin, 2013, 8(1): 141‒153 https://doi.org/10.1007/s11464-012-0260-z

References

[1]
Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520
[2]
Chang K C, Pearson K, Zhang T. On eigenvalue problems of real symmetric tensors. J Math Anal Appl, 2009, 350: 416-422
CrossRef Google scholar
[3]
Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284-294
CrossRef Google scholar
[4]
Dahl D, Leinass J M, Myrheim J, Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711-725
CrossRef Google scholar
[5]
Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341-361
CrossRef Google scholar
[6]
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP ’05), Vol 1. Piscataway: IEEE Computer Society Press, 2005, 129-132
[7]
Ng M, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor. SIAM J Matrix Anal Appl, 2009, 31: 1090-1099
CrossRef Google scholar
[8]
Ni Q, Qi L, Wang F. An eigenvalue method for the positive definiteness identification problem. IEEE Trans Automat Control, 2008, 53: 1096-1107
CrossRef Google scholar
[9]
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324
CrossRef Google scholar
[10]
Qi L. Eigenvalues and invariants of tensor. J Math Anal Appl, 2007, 325: 1363-1377
CrossRef Google scholar
[11]
Qi L, Dai H H, Han D. Conditions for strong ellipticity and M-eigenvalues. Front Math China, 2009, 4(2): 349-364
CrossRef Google scholar
[12]
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2(4): 501-526
CrossRef Google scholar
[13]
Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Math Program, 2009, 118: 301-316
CrossRef Google scholar
[14]
Qi L, Wang Y, Wu E X. D-eigenvalues of diffusion kurtosis tensor. J Comput Appl Math, 2008, 221: 150-157
CrossRef Google scholar
[15]
Rosakis P. Ellipticity and deformation with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1-37
CrossRef Google scholar
[16]
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89-96
CrossRef Google scholar
[17]
Wang Y, Qi L, Zhang X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer Linear Algebra Appl, 2009, 16: 589-601
CrossRef Google scholar
[18]
Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250
CrossRef Google scholar
[19]
Yang Y, Yang Q. Further results for Perron-Frobenius Theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530
CrossRef Google scholar
[20]
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363-378
CrossRef Google scholar
[21]
Zhou G, Caccetta L, Qi L. Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor. Linear Algebra Appl, 2013, 438(2): 959-968
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(127 KB)

Accesses

Citations

Detail

Sections
Recommended

/