A characterization of λ-central BMO space

Fayou ZHAO, Shanzhen LU

PDF(106 KB)
PDF(106 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 229-238. DOI: 10.1007/s11464-012-0251-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A characterization of λ-central BMO space

Author information +
History +

Abstract

We give a characterization of the λ-central BMO space via the boundedness of commutators of n-dimensional Hardy operators.

Keywords

λ-central BMO space / n-dimensional Hardy operator / commutator

Cite this article

Download citation ▾
Fayou ZHAO, Shanzhen LU. A characterization of λ-central BMO space. Front Math Chin, 2013, 8(1): 229‒238 https://doi.org/10.1007/s11464-012-0251-0

References

[1]
Alvarez J, Guzmián-Partida M, Lakey J. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 51: 1-47
[2]
Bastero J, Milman M, Ruiz F J. Commutators of the maximal and sharp functions. Proc Amer Math Soc, 2000, 128: 3329-3334
CrossRef Google scholar
[3]
Chen Y Z, Lau K S. Some new classes of Hardy spaces. J Funct Anal, 1989, 84: 255-278
CrossRef Google scholar
[4]
Christ M, Grafakos L. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123: 1687-1693
CrossRef Google scholar
[5]
Coifman R R, Rochberg R, Weiss G. Factorization theorems for Hardy spaces in several variables. Ann Math, 1976, 103: 611-635
CrossRef Google scholar
[6]
Ding Y, Lu S Z, Yabuta K. On commutators of Marcinkiewicz integrals with rough kernel. J Math Anal Appl, 2002, 275: 60-68
CrossRef Google scholar
[7]
Faris W. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43: 365-373
CrossRef Google scholar
[8]
Fefferman C. Characterization of bounded mean oscillation. Bull Amer Math Soc, 1971, 77: 587-588
CrossRef Google scholar
[9]
Fu Z W, Liu Z G, Lu S Z, Wang H B. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50: 1418-1426
CrossRef Google scholar
[10]
Fu Z W, Lu S Z. Commutators of generalized Hardy operators. Math Nachr, 2009, 282: 832-845
CrossRef Google scholar
[11]
Garcì-Cuerva J. Hardy spaces and Beurling algebras. J Lond Math Soc, 1989, 39: 499-513
CrossRef Google scholar
[12]
Hardy G H, Littlewood J, Póya G. Inequalities. 2nd ed. London/New York: Cambridge University Press, 1952
[13]
Komori Y. Notes on commutators of Hardy operators. Int J Pure Appl Math, 2003, 7: 329-334
[14]
Long S C, Wang J. Commutators of Hardy operators. J Math Anal Appl, 2002, 274: 626-644
CrossRef Google scholar
[15]
Lu S Z, Yang D C. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl, 1995, 11: 72-94
[16]
Meng Y, Yang D C. Boundedness of commutators with Lipschitz functions in nonhomogeneous spaces. Taiwanese J Math, 2006, 10: 1443-1464
[17]
Segovia C, Torrea J L. Vector-valued commutators and applications. Indiana Univ Math J, 1989, 38: 959-971
CrossRef Google scholar
[18]
Tang C Q, Li Q G, Ma B L. Commutators of fractional integral operator associated to a nondoubling measures on metric spaces. Taiwanese J Math, 2009, 13: 1043-1052

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(106 KB)

Accesses

Citations

Detail

Sections
Recommended

/