A characterization of λ-central BMO space

Fayou Zhao , Shanzhen Lu

Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 229 -238.

PDF (106KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 229 -238. DOI: 10.1007/s11464-012-0251-0
Research Article
RESEARCH ARTICLE

A characterization of λ-central BMO space

Author information +
History +
PDF (106KB)

Abstract

We give a characterization of the λ-central BMO space via the boundedness of commutators of n-dimensional Hardy operators.

Keywords

λ-central BMO space / n-dimensional Hardy operator / commutator

Cite this article

Download citation ▾
Fayou Zhao, Shanzhen Lu. A characterization of λ-central BMO space. Front. Math. China, 2012, 8(1): 229-238 DOI:10.1007/s11464-012-0251-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alvarez J., Guzmán-Partida M., Lakey J.. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect Math, 2000, 51: 1-47

[2]

Bastero J., Milman M., Ruiz F. J.. Commutators of the maximal and sharp functions. Proc Amer Math Soc, 2000, 128: 3329-3334

[3]

Chen Y. Z., Lau K. S.. Some new classes of Hardy spaces. J Funct Anal, 1989, 84: 255-278

[4]

Christ M., Grafakos L.. Best constants for two nonconvolution inequalities. Proc Amer Math Soc, 1995, 123: 1687-1693

[5]

Coifman R. R., Rochberg R., Weiss G.. Factorization theorems for Hardy spaces in several variables. Ann Math, 1976, 103: 611-635

[6]

Ding Y., Lu S. Z., Yabuta K.. On commutators of Marcinkiewicz integrals with rough kernel. J Math Anal Appl, 2002, 275: 60-68

[7]

Faris W.. Weak Lebesgue spaces and quantum mechanical binding. Duke Math J, 1976, 43: 365-373

[8]

Fefferman C.. Characterization of bounded mean oscillation. Bull Amer Math Soc, 1971, 77: 587-588

[9]

Fu Z. W., Liu Z. G., Lu S. Z., Wang H. B.. Characterization for commutators of n-dimensional fractional Hardy operators. Sci China Ser A, 2007, 50: 1418-1426

[10]

Fu Z. W., Lu S. Z.. Commutators of generalized Hardy operators. Math Nachr, 2009, 282: 832-845

[11]

García-Cuerva J.. Hardy spaces and Beurling algebras. J Lond Math Soc, 1989, 39: 499-513

[12]

Hardy G. H., Littlewood J., Pólya G.. Inequalities, 1952 2nd ed. London/New York: Cambridge University Press

[13]

Komori Y.. Notes on commutators of Hardy operators. Int J Pure Appl Math, 2003, 7: 329-334

[14]

Long S. C., Wang J.. Commutators of Hardy operators. J Math Anal Appl, 2002, 274: 626-644

[15]

Lu S. Z., Yang D. C.. The central BMO spaces and Littlewood-Paley operators. Approx Theory Appl, 1995, 11: 72-94

[16]

Meng Y., Yang D. C.. Boundedness of commutators with Lipschitz functions in nonhomogeneous spaces. Taiwanese J Math, 2006, 10: 1443-1464

[17]

Segovia C., Torrea J. L.. Vector-valued commutators and applications. Indiana Univ Math J, 1989, 38: 959-971

[18]

Tang C. Q., Li Q. G., Ma B. L.. Commutators of fractional integral operator associated to a nondoubling measures on metric spaces. Taiwanese J Math, 2009, 13: 1043-1052

AI Summary AI Mindmap
PDF (106KB)

1018

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/