Asymptotic estimates for slowly rotating Newtonian stars

Haigang LI, Jiguang BAO

PDF(100 KB)
PDF(100 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1141-1149. DOI: 10.1007/s11464-012-0249-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymptotic estimates for slowly rotating Newtonian stars

Author information +
History +

Abstract

This work is mainly concerned with the rotating Newtonian stars with prescribed angular velocity law. For general compressible fluids, the existence of rotating star solutions was proved by using concentrationcompactness principle. In this paper, we establish the asymptotic estimates on the diameters of the stars with small rotation. The novelty of this paper is that a direct and concise definition of slowly rotating stars is given, different from the case with given angular momentum law, and the most general fluids are considered.

Keywords

Slowly rotating star / asymptotic estimate / axi-symmetry

Cite this article

Download citation ▾
Haigang LI, Jiguang BAO. Asymptotic estimates for slowly rotating Newtonian stars. Front Math Chin, 2012, 7(6): 1141‒1149 https://doi.org/10.1007/s11464-012-0249-7

References

[1]
Auchmuty J F G. Existence of equilibrium figures. Arch Ration Mech Anal, 1977, 65: 249-261
CrossRef Google scholar
[2]
Auchmuty J F G. The global branching of rotating stars. Arch Ration Mech Anal, 1991, 114: 179-194
CrossRef Google scholar
[3]
Auchmuty J F G, Beals R. Variations of some non-linear free boundary problems. Arch Ration Mech Anal, 1971, 43: 255-271
CrossRef Google scholar
[4]
Chandrasekhar S. Introduction to the Stellar Structure. Chicago: University of Chicago Press, 1939
[5]
Chandrasekhar S. Ellipsoidal Figures of Equilibrium. New York: Dover Publication Inc, 1987
[6]
Chanillo S, Li Y Y. On diameters of uniformly rotating stars. Comm Math Phys, 1994, 166: 417-430
CrossRef Google scholar
[7]
Deng Y B, Liu T P, Yang T, Yao Z A. Solutions of Euler-Poisson equations for gaseous stars. Arch Ration Mech Anal, 2002, 164: 261-285
CrossRef Google scholar
[8]
Friedman A, Turkington B. Asymptotic estimates for an axisymmetric rotating fluid. J Funct Anal, 1980, 37: 136-163
CrossRef Google scholar
[9]
Friedman A, Turkington B. The oblateness of an axisymmetric rotating fluid. Indiana Univ Math J, 1980, 29: 777-792
CrossRef Google scholar
[10]
Hardy G H, Littlewood J E, Pólya G. Inequality. Cambridge: Cambridge Univ Press, 1934
[11]
Li H G, Bao J G. Existence of the rotating stars with prescribed angular velocity law. Houston J Math, 2011, 37: 297-309
[12]
Li H G, Bao J G. Euler-Poisson equations related to general compressible rotating fluids. Discrete Contin Dyn Syst Ser A, 2011, 29: 1085-1096
CrossRef Google scholar
[13]
Li Y Y. On uniformly rotating stars. Arch Ration Mech Anal, 1991, 115: 367-393
CrossRef Google scholar
[14]
Lions P L. The concentration-compactness principle in the calculus of variation, The locally case, part I. Ann I H Anal Nonli, 1984, 1: 109-145
[15]
Luo T, Smoller J. Rotating fluids with self-gravitation in bounded domains. Arch Ration Mech Anal, 2004, 173: 345-377
CrossRef Google scholar
[16]
Luo T, Smoller J. Nonlinear dynamical stability of Newtonian rotating white dwarfs and supermassive stars. Comm Math Phys, 2008, 284: 425-457
CrossRef Google scholar
[17]
Luo T, Smoller J. Existence and nonlinear stability of rotating star solutions of the compressible Euler-Poisson equations. Arch Rational Mech Anal, 2009, 191: 447-496
CrossRef Google scholar
[18]
McCann R J. Stable rotating binary stars and fluid in a tube. Houston J Math, 2006, 32: 603-632
[19]
Tassoul J L. Theory of Rotating Stars. Princeton: Princeton Univ Press, 1978
[20]
Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: John Wiley and Sons, Inc, 1972

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(100 KB)

Accesses

Citations

Detail

Sections
Recommended

/