Herz type Besov and Triebel-Lizorkin spaces with variable exponent

Chune SHI, Jingshi XU

PDF(153 KB)
PDF(153 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 907-921. DOI: 10.1007/s11464-012-0248-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Herz type Besov and Triebel-Lizorkin spaces with variable exponent

Author information +
History +

Abstract

The Herz type Besov and Triebel-Lizorkin spaces with variable exponent are introduced. Then characterizations of these new spaces by maximal functions are given.

Keywords

Variable exponent / Herz space / Besov space / Triebel-Lizorkin space / equivalent norm / maximal function

Cite this article

Download citation ▾
Chune SHI, Jingshi XU. Herz type Besov and Triebel-Lizorkin spaces with variable exponent. Front Math Chin, 2013, 8(4): 907‒921 https://doi.org/10.1007/s11464-012-0248-8

References

[1]
Almeida A, Hasanov J, Samko S. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math J, 2008, 15: 198-208
[2]
Almeida A, Höstö P. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258: 1628-1655
CrossRef Google scholar
[3]
Andersen K, John R. Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math, 1980, 69: 19-31
[4]
Cruz-Uribe D, Fiorenza A, Martell C, Pérez C. The Boundedness of classical operators on valible Lp spaces. Ann Acad Sci Fenn Math, 2006, 31: 239-264
[5]
Cruz-Uribe D, Fiorenza A, Neugebauer C. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28: 223-238
[6]
Diening L. Maximal function on generalized Lebesgue spaces Lp(x). Math Inequal Appl, 2004, 7: 245-253
[7]
Diening L. Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657-700
CrossRef Google scholar
[8]
Diening L, Harjulehto P, Hästö P, Růžička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, Vol 2017. Berlin: Springer-Verlag, 2011
CrossRef Google scholar
[9]
Diening L, Hästö P, Roudenko S. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731-1768
CrossRef Google scholar
[10]
Fefferman C, Stein E. Some maximal inequalities. Amer J Math, 1971, 93: 107-115
CrossRef Google scholar
[11]
Frazier M, Jawerth B. Decomposition of Besov spaces. Indiana Univ Math J, 1985, 34: 777-799
CrossRef Google scholar
[12]
Gurka P, Harjulehto P, Nekvinda A. Bessel potential spaces with variable exponent. Math Inequal Appl, 2007, 10: 661-676
[13]
Harjulehto P, Hästö P, Le U V, Nuortio M. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551-4574
CrossRef Google scholar
[14]
Hästö P. Local-to-global results in variable exponent spaces. Math Res Lett, 2009, 16(2): 263-278
[15]
Hernández E, Yang D. Interpolation of Herz spaces and applications. Math Nachr, 1999, 205: 69-87
CrossRef Google scholar
[16]
Izuki M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36: 33-50
CrossRef Google scholar
[17]
Izuki M. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59: 199-213
CrossRef Google scholar
[18]
Izuki M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45: 475-503
CrossRef Google scholar
[19]
Kempka H. 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev Mat Complut, 2009, 22: 227-25
[20]
Kempka H. Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J Funct Spaces Appl, 2010, 8: 129-165
CrossRef Google scholar
[21]
Kováčik O, Rákosník J. On spaces Lp(x) and Wk,p(x). Czechoslovak Math J, 1991, 41: 592-681
[22]
Li X, Yang D. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40: 484-501
[23]
Lu S. Multipliers and Herz type spaces. Sci China Series A: Math, 2008, 51(10): 1919-1936
CrossRef Google scholar
[24]
Lu S, Yabuta K, Yang D. The Boundedness of some sublinear operators in weighted Herz-type spaces. Kodai Math J, 2000, 23: 391-410
CrossRef Google scholar
[25]
Lu S, Yang D. The decomposition of the weighted Herz spaces and its application. Sci China Series A: Math, 1995, 38: 147-158
[26]
Lu S, Yang D, Hu G. Herz Type Spaces and Their Applications. Beijing: Science Press, 2008
[27]
Nekvinda A. Hardy-Littlewood maximal operator on Lp(x). Math Inequal Appl, 2004, 7: 255-265
[28]
Peetre J. On spaces of Triebel-Lizorkin type. Ark Mat, 1975, 13: 123-130
CrossRef Google scholar
[29]
Rychkov V S. On a theorem of Bui, Paluszyński, and Taibleson. Proc Steklov Inst Math, 1999, 227 : 280-292
[30]
Stein E, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton: Princeton Univ Press, 1971
[31]
Tang L, Yang D. Boundedness of vector-valued operators on weighted Herz spaces. Approx Theory & Its Appl, 2000, 16: 58-70
[32]
Ullrich T. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J Funct Spaces Appl, 2012, doi: 10.1155/2012/163213
CrossRef Google scholar
[33]
Xu J. A discrete characterization of the Herz-type Triebel-Lizorkin spaces and its applications. Acta Math Sci Ser B Engl Ed, 2004, 24(3): 412-420
[34]
Xu J. Equivalent norms of Herz type Besov and Triebel-Lizorkin spaces. J Funct Spaces Appl, 2005, 3(1): 17-31
CrossRef Google scholar
[35]
Xu J. The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces. Integral Transforms Spec Funct, 2008, 19(8): 599-605
CrossRef Google scholar
[36]
Xu J. Variable Besov spaces and Triebel-Lizorkin spaces. Ann Acad Sci Fen Math, 2008, 33: 511-522
[37]
Xu J. An atomic decomposition of variable Besov and Triebel-Lizorkin spaces. Armen J Math, 2009, 2(1): 1-12
[38]
Xu J, Yang D. Applications of Herz-type Triebel-Lizorkin spaces. Acta Math Sci Ser B Engl Ed, 2003, 23(3): 328-338
[39]
Xu J, Yang D. Herz-type Triebel-Lizorkin spaces (I). Acta Math Sinica (Engl Ser), 2005, 21: 643-654
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(153 KB)

Accesses

Citations

Detail

Sections
Recommended

/