Herz type Besov and Triebel-Lizorkin spaces with variable exponent

Chune Shi , Jingshi Xu

Front. Math. China ›› 2012, Vol. 8 ›› Issue (4) : 907 -921.

PDF (153KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (4) : 907 -921. DOI: 10.1007/s11464-012-0248-8
Research Article
RESEARCH ARTICLE

Herz type Besov and Triebel-Lizorkin spaces with variable exponent

Author information +
History +
PDF (153KB)

Abstract

The Herz type Besov and Triebel-Lizorkin spaces with variable exponent are introduced. Then characterizations of these new spaces by maximal functions are given.

Keywords

Variable exponent / Herz space / Besov space / Triebel-Lizorkin space / equivalent norm / maximal function

Cite this article

Download citation ▾
Chune Shi, Jingshi Xu. Herz type Besov and Triebel-Lizorkin spaces with variable exponent. Front. Math. China, 2012, 8(4): 907-921 DOI:10.1007/s11464-012-0248-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Almeida A., Hasanov J., Samko S.. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math J, 2008, 15: 198-208

[2]

Almeida A., Höstö P.. Besov spaces with variable smoothness and integrability. J Funct Anal, 2010, 258: 1628-1655

[3]

Andersen K., John R.. Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math, 1980, 69: 19-31

[4]

Cruz-Uribe D., Fiorenza A., Martell C., Pérez C.. The Boundedness of classical operators on valible Lp spaces. Ann Acad Sci Fenn Math, 2006, 31: 239-264

[5]

Cruz-Uribe D., Fiorenza A., Neugebauer C.. The maximal function on variable Lp spaces. Ann Acad Sci Fenn Math, 2003, 28: 223-238

[6]

Diening L.. Maximal function on generalized Lebesgue spaces Lp(x). Math Inequal Appl, 2004, 7: 245-253

[7]

Diening L.. Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull Sci Math, 2005, 129: 657-700

[8]

Diening L., Harjulehto P., Hästö P., Růžička M.. Lebesgue and Sobolev Spaces with Variable Exponents, 2011, Berlin: Springer-Verlag

[9]

Diening L., Hästö P., Roudenko S.. Function spaces of variable smoothness and integrability. J Funct Anal, 2009, 256: 1731-1768

[10]

Fefferman C., Stein E.. Some maximal inequalities. Amer J Math, 1971, 93: 107-115

[11]

Frazier M., Jawerth B.. Decomposition of Besov spaces. Indiana Univ Math J, 1985, 34: 777-799

[12]

Gurka P., Harjulehto P., Nekvinda A.. Bessel potential spaces with variable exponent. Math Inequal Appl, 2007, 10: 661-676

[13]

Harjulehto P., Hästö P., Le U. V., Nuortio M.. Overview of differential equations with non-standard growth. Nonlinear Anal, 2010, 72: 4551-4574

[14]

Hästö P.. Local-to-global results in variable exponent spaces. Math Res Lett, 2009, 16(2): 263-278

[15]

Hernández E., Yang D.. Interpolation of Herz spaces and applications. Math Nachr, 1999, 205: 69-87

[16]

Izuki M.. Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal Math, 2010, 36: 33-50

[17]

Izuki M.. Boundedness of commutators on Herz spaces with variable exponent. Rend Circ Mat Palermo, 2010, 59: 199-213

[18]

Izuki M.. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent. Glas Mat, 2010, 45: 475-503

[19]

Kempka H.. 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev Mat Complut, 2009, 22: 227-325

[20]

Kempka H.. Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J Funct Spaces Appl, 2010, 8: 129-165

[21]

Kováčik O., Rákosník J.. On spaces Lp(x)and Wk,p(x). Czechoslovak Math J, 1991, 41: 592-681

[22]

Li X., Yang D.. Boundedness of some sublinear operators on Herz spaces. Illinois J Math, 1996, 40: 484-501

[23]

Lu S.. Multipliers and Herz type spaces. Sci China Series A: Math, 2008, 51(10): 1919-1936

[24]

Lu S., Yabuta K., Yang D.. The Boundedness of some sublinear operators in weighted Herz-type spaces. Kodai Math J, 2000, 23: 391-410

[25]

Lu S., Yang D.. The decomposition of the weighted Herz spaces and its application. Sci China Series A: Math, 1995, 38: 147-158

[26]

Lu S., Yang D., Hu G.. Herz Type Spaces and Their Applications, 2008, Beijing: Science Press

[27]

Nekvinda A.. Hardy-Littlewood maximal operator on L p(x). Math Inequal Appl, 2004, 7: 255-265

[28]

Peetre J.. On spaces of Triebel-Lizorkin type. Ark Mat, 1975, 13: 123-130

[29]

Rychkov V. S.. On a theorem of Bui, Paluszyński, and Taibleson. Proc Steklov Inst Math, 1999, 227: 280-292

[30]

Stein E., Weiss G.. Introduction to Fourier Analysis on Euclidean Spaces, 1971, Princeton: Princeton Univ Press

[31]

Tang L., Yang D.. Boundedness of vector-valued operators on weighted Herz spaces. Approx Theory & Its Appl, 2000, 16: 58-70

[32]

Ullrich T. Continuous characterizations of Besov-Lizorkin-Triebel spaces and new interpretations as coorbits. J Funct Spaces Appl, 2012, doi: 10.1155/2012/163213

[33]

Xu J.. A discrete characterization of the Herz-type Triebel-Lizorkin spaces and its applications. Acta Math Sci Ser B Engl Ed, 2004, 24(3): 412-420

[34]

Xu J.. Equivalent norms of Herz type Besov and Triebel-Lizorkin spaces. J Funct Spaces Appl, 2005, 3(1): 17-31

[35]

Xu J.. The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces. Integral Transforms Spec Funct, 2008, 19(8): 599-605

[36]

Xu J.. Variable Besov spaces and Triebel-Lizorkin spaces. Ann Acad Sci Fen Math, 2008, 33: 511-522

[37]

Xu J.. An atomic decomposition of variable Besov and Triebel-Lizorkin spaces. Armen J Math, 2009, 2(1): 1-12

[38]

Xu J., Yang D.. Applications of Herz-type Triebel-Lizorkin spaces. Acta Math Sci Ser B Engl Ed, 2003, 23(3): 328-338

[39]

Xu J., Yang D.. Herz-type Triebel-Lizorkin spaces (I). Acta Math Sinica (Engl Ser), 2005, 21: 643-654

AI Summary AI Mindmap
PDF (153KB)

1282

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/