Finite-dimensional simple modular Lie superalgebra ℳ

Lili Ma , Liangyun Chen , Yongzheng Zhang

Front. Math. China ›› 2012, Vol. 8 ›› Issue (2) : 411 -441.

PDF (219KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (2) : 411 -441. DOI: 10.1007/s11464-012-0243-0
Research Article
RESEARCH ARTICLE

Finite-dimensional simple modular Lie superalgebra ℳ

Author information +
History +
PDF (219KB)

Abstract

A new family of finite-dimensional simple modular Lie superalgebra ℳ is constructed based on results of Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601–3619]. The simplicity and generators of ℳ are discussed and the derivation superalgebra of ℳ is characterized. Furthermore, the invariance of the nonnatural filtration of ℳ is determined by the method of minimal dimension of image spaces.

Keywords

Modular Lie superalgebra / derivation superalgebra / nonnatural filtration

Cite this article

Download citation ▾
Lili Ma, Liangyun Chen, Yongzheng Zhang. Finite-dimensional simple modular Lie superalgebra ℳ. Front. Math. China, 2012, 8(2): 411-441 DOI:10.1007/s11464-012-0243-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Celousov M. J.. Derivations of Lie algebras of Cartan-type. Izv Vyssh Uchebn Zaved Mat, 1970, 98: 126-134

[2]

Eldugue A.. Lie superalgebras with semisimple even part. J Algebra, 1996, 183: 649-663

[3]

Fei Q. Y.. On new simple Lie algebras of Shen Guangyu. Chin Ann Math Ser B, 1989, 10: 448-457

[4]

Kac V. G.. Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated. Math USSR-Izv, 1974, 8: 801-835

[5]

Kac V. G.. Lie superalgebras. Adv Math, 1977, 26: 8-96

[6]

Kac V. G.. Classification of infinite-dimensional simple linearly compact Lie super-algebras. Adv Math, 1998, 139: 1-55

[7]

Liu W. D., Zhang Y. Z., Wang X. L.. The derivation algebra of the Cartan-type Lie superalgebra HO. J Algebra, 2004, 273: 176-205

[8]

Ma F. M., Zhang Q. C.. Derivation algebra of modular Lie superalgebra K of Cartan-type. J Math (Wuhan), 2000, 20: 431-435

[9]

Shen G. Y.. An intrinsic property of the Lie algebra K(m, n). Chin Ann Math Ser B, 1981, 2: 105-115

[10]

Wang X. L., Liu W. D.. Filtered Lie superalgebras of odd Hamiltonian type HO. Adv Math (China), 2007, 36: 710-720

[11]

Wang Y., Zhang Y. Z.. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm Algebra, 2004, 32: 4117-4131

[12]

Xu X. N., Chen L. Y., Zhang Y. Z.. On the modular Lie superalgebra Ω. J Pure Appl Algebra, 2011, 215: 1093-1101

[13]

Zhang Q. C., Zhang Y. Z.. Derivation algebras of modular Lie superalgebras W and S of Cartan-type. Acta Math Sci Ser B Engl Ed, 2000, 20: 137-144

[14]

Zhang Y. Z.. Finite-dimensional Lie superalgebras of Cartan-type over field of prime characteristic. Chin Sci Bull, 1997, 42: 720-724

[15]

Zhang Y. Z., Fu H. C.. Finite dimensional Hamiltonian Lie superalgebras. Comm Algebra, 2002, 30: 2651-2673

[16]

Zhang Y. Z., Liu W. D.. Modular Lie superalgebras, 2004, Beijing: Science Press

[17]

Zhang Y. Z., Nan J. Z.. Finite-dimensional Lie superalgebras $W\left( {m,n,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} } \right)$ and $S\left( {m,n,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{t} } \right)$ of Cartan-type. Adv Math (China), 1998, 27: 240-246

[18]

Zhang Y. Z., Zhang Q. C.. Finite-dimensional modular Lie superalgebra Ω. J Algebra, 2009, 321: 3601-3619

AI Summary AI Mindmap
PDF (219KB)

824

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/