Finite-dimensional simple modular Lie superalgebra M

Lili MA, Liangyun CHEN, Yongzheng ZHANG

PDF(219 KB)
PDF(219 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (2) : 411-441. DOI: 10.1007/s11464-012-0243-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite-dimensional simple modular Lie superalgebra M

Author information +
History +

Abstract

A new family of finite-dimensional simple modular Lie superalgebra M is constructed based on results of Y. Z. Zhang and Q. C. Zhang [J. Algebra, 2009, 321: 3601–3619]. The simplicity and generators of M are discussed and the derivation superalgebra of M is characterized. Furthermore, the invariance of the nonnatural filtration of M is determined by the method of minimal dimension of image spaces.

Keywords

Modular Lie superalgebra / derivation superalgebra / nonnatural filtration

Cite this article

Download citation ▾
Lili MA, Liangyun CHEN, Yongzheng ZHANG. Finite-dimensional simple modular Lie superalgebra M. Front Math Chin, 2013, 8(2): 411‒441 https://doi.org/10.1007/s11464-012-0243-0

References

[1]
Celousov M J. Derivations of Lie algebras of Cartan-type. Izv Vyssh Uchebn Zaved Mat, 1970, 98: 126-134 (in Russian)
[2]
Eldugue A. Lie superalgebras with semisimple even part. J Algebra, 1996, 183: 649-663
CrossRef Google scholar
[3]
Fei Q Y. On new simple Lie algebras of Shen Guangyu. Chin Ann Math Ser B, 1989, 10: 448-457
[4]
Kac V G. Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated. Math USSR-Izv, 1974, 8: 801-835
CrossRef Google scholar
[5]
Kac V G. Lie superalgebras. Adv Math, 1977, 26: 8-96
CrossRef Google scholar
[6]
Kac V G. Classification of infinite-dimensional simple linearly compact Lie super-algebras. Adv Math, 1998, 139: 1-55
CrossRef Google scholar
[7]
Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan-type Lie superalgebra HO.J Algebra, 2004, 273: 176-205
CrossRef Google scholar
[8]
Ma F M, Zhang Q C. Derivation algebra of modular Lie superalgebra Kof Cartan-type. J Math (Wuhan), 2000, 20: 431-435 (in Chinese)
[9]
Shen G Y. An intrinsic property of the Lie algebra K(m, n).Chin Ann Math Ser B, 1981, 2: 105-115
[10]
Wang X L, Liu W D. Filtered Lie superalgebras of odd Hamiltonian type HO.Adv Math (China), 2007, 36: 710-720
[11]
Wang Y, Zhang Y Z. Derivation algebra Der(H) and central extensions of Lie superalgebras. Comm Algebra, 2004, 32: 4117-4131
CrossRef Google scholar
[12]
Xu X N, Chen L Y, Zhang Y Z. On the modular Lie superalgebra Ω.J Pure Appl Algebra, 2011, 215: 1093-1101
CrossRef Google scholar
[13]
Zhang Q C, Zhang Y Z. Derivation algebras of modular Lie superalgebras Wand S of Cartan-type. Acta Math Sci Ser B Engl Ed, 2000, 20: 137-144
[14]
Zhang Y Z. Finite-dimensional Lie superalgebras of Cartan-type over field of prime characteristic. Chin Sci Bull, 1997, 42: 720-724
CrossRef Google scholar
[15]
Zhang Y Z, Fu H C. Finite dimensional Hamiltonian Lie superalgebras. Comm Algebra, 2002, 30: 2651-2673
CrossRef Google scholar
[16]
Zhang Y Z, Liu W D. Modular Lie superalgebras. Beijing: Science Press, 2004 (in Chinese)
[17]
Zhang Y Z, Nan J Z. Finite-dimensional Lie superalgebras W(m, n, t) and S(m, n, t) of Cartan-type. Adv Math (China), 1998, 27: 240-246
[18]
Zhang Y Z, Zhang Q C. Finite-dimensional modular Lie superalgebra Ω.J Algebra, 2009, 321: 3601-3619
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(219 KB)

Accesses

Citations

Detail

Sections
Recommended

/