Factorizations of fitting classes

Nanying Yang , Wenbin Guo , N. T. Vorob’ev

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 943 -954.

PDF (154KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 943 -954. DOI: 10.1007/s11464-012-0233-2
Research Article
RESEARCH ARTICLE

Factorizations of fitting classes

Author information +
History +
PDF (154KB)

Abstract

In this paper, we prove that there exists a infinite set of non-trivial local Fitting classes every element in which is decomposable as a non-trivial product of Fitting classes such that every factor in the product is neither local nor a formation. In particular, this gives a positive answer to Problem 11.25 a) in The Kourovka Notebook.

Keywords

Fitting class / Normal Fitting class / semilocal Fitting class / Lockett class

Cite this article

Download citation ▾
Nanying Yang, Wenbin Guo, N. T. Vorob’ev. Factorizations of fitting classes. Front. Math. China, 2012, 7(5): 943-954 DOI:10.1007/s11464-012-0233-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballester-Bolinches A., Ezquerro L. M. Classes of Finite Groups, 2006, Dordrecht: Springer

[2]

Beidleman J. C. On products of normal Fitting classes. Arch Math (Basel), 1976, 27: 569-571

[3]

Berger R., Cossey J. An example in the theory of normal Fitting classes. Math Z, 1978, 154(1): 573-578

[4]

Berger T. K. More normal Fitting classes of finite solvable groups. Math Z, 1976, 151(1): 1-3

[5]

Blessenohl D., Gaschütz W. Über normale Schunk und Fittingklassen. Math Z, 1976, 148(1): 1-8

[6]

Brison O. Y. Hall operators for Fitting classes. Arch Math (Basel), 1979, 33: 1-9

[7]

Cossey J. Products of Fitting class. Math Z, 1975, 141(3): 289-295

[8]

Čunihin S. A. On π-special groups. Dokl Akad Nauk SSSR (NS), 1948, 59: 443-445

[9]

Doerk K. Übet den Rand einer Fitting Klasse endlicher auflösbarer Gruppen. J Algebra, 1978, 51: 619-630

[10]

Doerk K., Hawkes T. Finite Soluble Groups, 1992, Berlin-New York: Walter de Gruyter

[11]

Gállego M. P. A note on Hall operators for Fitting classes. Bull London Math Soc, 1985, 17: 248-252

[12]

Guo W. Local formations in which every subformation of type Np has a complements. Chinese Sci Bull, 1997, 42(5): 364-367

[13]

Guo W. On one question of Kourovka Notebook. Comm Algebra, 2000, 28(10): 4767-4782

[14]

Guo W., Selkin V. M., Shum K. P. Factorization theory of 1-generated ω-composition formations. Comm Algebra, 2007, 35: 2347-2377

[15]

Guo W., Shum K. P. Uncancellative factorizations of Baer-local formations. J Algebra, 2003, 267: 654-672

[16]

Guo W., Shum K. P., Vorobev N. T. Problems related to the Lockett Conjecture on Fitting classes of finite groups. Indag Math (NS), 2008, 19(3): 391-339

[17]

Hauck P. On products of Fitting classes. J London Math Soc, 1979, 20(2): 423-434

[18]

Lockett P. On the theory of Fitting classes of finite soluble groups. Math Z, 1973, 131: 103-115

[19]

Lockett P. The Fitting class $\mathfrak{F}*$. Math Z, 1974, 137(2): 131-136

[20]

Lu Y., Guo W., Vorobev N. T. Description of $\mathfrak{F}$-injectors of finite soluble groups. Math Sci Res J, 2008, 12(1): 17-22

[21]

Mazurov V. D., Khukhro E. I. The Kourovka Notebook, Unsolved Problems in Groups, No 11, 1990, Novosibirsk: Inst Math of Sov Akad Nauk SSSR, Sib Branch

[22]

Shemetkov L. A. Screens of products of formations. Dakl Akad Nauk SSSR, 1981, 25(8): 677-680

[23]

Shemetkov L. A. On product of formation of algebraic systems. Algebra i Logic, 1984, 23(6): 721-729

[24]

Skiba A. N. Algebraic Formations, 1997, Minsk: Belarus Science

[25]

Vorob’ev N. T. Radical classes of finite groups with the Lockett condition. Math Notes, 1988, 43: 91-94

[26]

Vorob’ev N. T. On the Hawkes conjecture for radical classes. Siberian Math J, 1996, 37(5): 1296-1302

[27]

Vorob’ev N. T., Skiba A. N. Local products of non-local Fitting classes. Problems in Algebra, 1995, 8: 55-58

AI Summary AI Mindmap
PDF (154KB)

744

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/