
Factorizations of fitting classes
Nanying Yang, Wenbin Guo, N. T. Vorob’ev
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 943-954.
Factorizations of fitting classes
In this paper, we prove that there exists a infinite set of non-trivial local Fitting classes every element in which is decomposable as a non-trivial product of Fitting classes such that every factor in the product is neither local nor a formation. In particular, this gives a positive answer to Problem 11.25 a) in The Kourovka Notebook.
Fitting class / Normal Fitting class / semilocal Fitting class / Lockett class
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
/
〈 |
|
〉 |