Factorizations of Fitting classes

Nanying YANG, Wenbin GUO, N. T. VOROB’EV

PDF(154 KB)
PDF(154 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 943-954. DOI: 10.1007/s11464-012-0233-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Factorizations of Fitting classes

Author information +
History +

Abstract

In this paper, we prove that there exists a infinite set of non-trivial local Fitting classes every element in which is decomposable as a non-trivial product of Fitting classes such that every factor in the product is neither local nor a formation. In particular, this gives a positive answer to Problem 11.25 a) in The Kourovka Notebook.

Keywords

Fitting class / Normal Fitting class / semilocal Fitting class / Lockett class

Cite this article

Download citation ▾
Nanying YANG, Wenbin GUO, N. T. VOROB’EV. Factorizations of Fitting classes. Front Math Chin, 2012, 7(5): 943‒954 https://doi.org/10.1007/s11464-012-0233-2

References

[1]
Ballester-Bolinches A, Ezquerro L M. Classes of Finite Groups. Dordrecht: Springer, 2006
[2]
Beidleman J C. On products of normal Fitting classes. Arch Math (Basel), 1976, 27: 569-571
CrossRef Google scholar
[3]
Berger R, Cossey J. An example in the theory of normal Fitting classes. Math Z, 1978, 154(1): 573-578
[4]
Berger T K. More normal Fitting classes of finite solvable groups. Math Z, 1976, 151(1): 1-3
CrossRef Google scholar
[5]
Blessenohl D, Gaschütz W. Über normale Schunk und Fittingklassen. Math Z, 1976, 148(1): 1-8
[6]
Brison O Y. Hall operators for Fitting classes. Arch Math (Basel), 1979, 33: 1-9
CrossRef Google scholar
[7]
Cossey J. Products of Fitting class. Math Z, 1975, 141(3): 289-295
CrossRef Google scholar
[8]
Čunihin S A. On π-special groups. Dokl Akad Nauk SSSR (NS), 1948, 59: 443-445
[9]
Doerk K. Übet den Rand einer Fitting Klasse endlicher auflösbarer Gruppen. J Algebra, 1978, 51: 619-630
CrossRef Google scholar
[10]
Doerk K, Hawkes T. Finite Soluble Groups. Berlin-New York: Walter de Gruyter, 1992
CrossRef Google scholar
[11]
Gállego M P. A note on Hall operators for Fitting classes. Bull London Math Soc, 1985, 17: 248-252
CrossRef Google scholar
[12]
Guo W. Local formations in which every subformation of type Np has a complements. Chinese Sci Bull, 1997, 42(5): 364-367
CrossRef Google scholar
[13]
Guo W. On one question of Kourovka Notebook. Comm Algebra, 2000, 28(10): 4767-4782
CrossRef Google scholar
[14]
Guo W, Selkin V M, Shum K P. Factorization theory of 1-generated ω-composition formations. Comm Algebra, 2007, 35: 2347-2377
CrossRef Google scholar
[15]
Guo W, Shum K P. Uncancellative factorizations of Baer-local formations. J Algebra, 2003, 267: 654-672
CrossRef Google scholar
[16]
Guo W, Shum K P, Vorobev N T. Problems related to the Lockett Conjecture on Fitting classes of finite groups. Indag Math (NS), 2008, 19(3): 391-339
CrossRef Google scholar
[17]
Hauck P. On products of Fitting classes. J London Math Soc, 1979, 20(2): 423-434
CrossRef Google scholar
[18]
Lockett P. On the theory of Fitting classes of finite soluble groups. Math Z, 1973, 131: 103-115
CrossRef Google scholar
[19]
Lockett P. The Fitting class *. Math Z, 1974, 137(2): 131-136
CrossRef Google scholar
[20]
Lu Yufeng, Guo W, Vorobev N T. Description of -injectors of finite soluble groups. Math Sci Res J, 2008, 12(1): 17-22
[21]
Mazurov V D, Khukhro E I. The Kourovka Notebook, Unsolved Problems in Groups, No 11. Novosibirsk: Inst Math of Sov Akad Nauk SSSR, Sib Branch, 1990
[22]
Shemetkov L A. Screens of products of formations. Dakl Akad Nauk SSSR, 1981, 25(8): 677-680
[23]
Shemetkov L A. On product of formation of algebraic systems. Algebra i Logic, 1984, 23(6): 721-729
CrossRef Google scholar
[24]
Skiba A N. Algebraic Formations. Minsk: Belarus Science, 1997
[25]
Vorob'ev N T. Radical classes of finite groups with the Lockett condition. Math Notes, 1988, 43: 91-94
CrossRef Google scholar
[26]
Vorob'ev N T. On the Hawkes conjecture for radical classes. Siberian Math J, 1996, 37(5): 1296-1302
[27]
Vorob'ev N T, Skiba A N. Local products of non-local Fitting classes. Problems in Algebra, 1995, 8: 55-58

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(154 KB)

Accesses

Citations

Detail

Sections
Recommended

/