New proof of a Calabi’s theorem

Yingyi Wu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 933 -941.

PDF (127KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 933 -941. DOI: 10.1007/s11464-012-0232-3
Research Article
RESEARCH ARTICLE

New proof of a Calabi’s theorem

Author information +
History +
PDF (127KB)

Abstract

A Calabi’s theorem says that on a compact Riemann surface, an extremal metric is a constant scalar curvature metric. In this paper, we use a new method to prove this theorem. Then we give an interesting corollary.

Keywords

Extremal metric / compact Riemann surface

Cite this article

Download citation ▾
Yingyi Wu. New proof of a Calabi’s theorem. Front. Math. China, 2012, 7(5): 933-941 DOI:10.1007/s11464-012-0232-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Calabi E. Yau S. T. Extremal Kähler metrics. Seminar on Differential Geometry, 1982, Princeton: Princeton Univ Press, 259-290

[2]

Chen Q., Wu Y. Y. Existences and explicit constructions of HCMU metrics on S2 and T2. Pacific J Math, 2009, 240(2): 267-288

[3]

Chen Q., Wu Y. Y. Character 1-form and the existence of an HCMU metric. Math Ann, 2011, 351(2): 327-351

[4]

Chen X. X. Obstruction to the existence of metric whose curvature has umbilical Hessian in a K-Surface. Comm Anal Geom, 2000, 8(2): 267-299

[5]

Lin C. S., Zhu X. H. Explicit construction of extremal Hermitian metric with finite conical singularities on S2. Comm Anal Geom, 2002, 10(1): 177-216

AI Summary AI Mindmap
PDF (127KB)

727

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/