New proof of a Calabi’s theorem

Yingyi WU

PDF(127 KB)
PDF(127 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 933-941. DOI: 10.1007/s11464-012-0232-3
RESEARCH ARTICLE
RESEARCH ARTICLE

New proof of a Calabi’s theorem

Author information +
History +

Abstract

A Calabi’s theorem says that on a compact Riemann surface, an extremal metric is a constant scalar curvature metric. In this paper, we use a new method to prove this theorem. Then we give an interesting corollary.

Keywords

Extremal metric / compact Riemann surface

Cite this article

Download citation ▾
Yingyi WU. New proof of a Calabi’s theorem. Front Math Chin, 2012, 7(5): 933‒941 https://doi.org/10.1007/s11464-012-0232-3

References

[1]
Calabi E. Extremal Kähler metrics. In: Yau S T, ed. Seminar on Differential Geometry. Ann Math Stud, 102. Princeton: Princeton Univ Press, 1982, 259-290
[2]
Chen Q, Wu Y Y. Existences and explicit constructions of HCMU metrics on S2 and T2. Pacific J Math, 2009, 240(2): 267-288
CrossRef Google scholar
[3]
Chen Q, Wu Y Y. Character 1-form and the existence of an HCMU metric. Math Ann, 2011, 351(2): 327-351
CrossRef Google scholar
[4]
Chen X X. Obstruction to the existence of metric whose curvature has umbilical Hessian in a K-Surface. Comm Anal Geom, 2000, 8(2): 267-299
[5]
Lin C S, Zhu X H. Explicit construction of extremal Hermitian metric with finite conical singularities on S2. Comm Anal Geom, 2002, 10(1): 177-216

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(127 KB)

Accesses

Citations

Detail

Sections
Recommended

/