Voter model in a random environment in ℤd

Zhichao Shan , Dayue Chen

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 895 -905.

PDF (156KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 895 -905. DOI: 10.1007/s11464-012-0228-z
Research Article
RESEARCH ARTICLE

Voter model in a random environment in ℤd

Author information +
History +
PDF (156KB)

Abstract

We consider the voter model with flip rates determined by {µe, eEd}, where Ed is the set of all non-oriented nearest-neighbour edges in the Euclidean lattice ℤd. Suppose that {µe, eEd} are independent and identically distributed (i.i.d.) random variables satisfying µe ⩾ 1. We prove that when d = 2, almost surely for all random environments, the voter model has only two extremal invariant measures: δ0 and δ1.

Keywords

Voter model / random walk / random environment / duality

Cite this article

Download citation ▾
Zhichao Shan, Dayue Chen. Voter model in a random environment in ℤd. Front. Math. China, 2012, 7(5): 895-905 DOI:10.1007/s11464-012-0228-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barlow M. T., Deuschel J. -D. Invariance principle for the random conductance model with unbounded conductances. Ann Probab, 2010, 38(1): 234-276

[2]

Barlow M T, Peres Y, Sousi P. Collisions of random walks. Preprint, 2010 (http://arxiv.org/abs/1003.3255)

[3]

Chen X., Chen D. Two random walks on the open cluster of ℤ2 meet infinitely often. Sci China Math, 2010, 53(8): 1971-1978

[4]

Chen X., Chen D. Some sufficient conditions for infinite collisions of simple random walks on a wedge comb. Electron J Probab, 2011, 16: 1341-1355

[5]

Delmotte T. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev Mat Iberoam, 1999, 15: 181-232

[6]

Delmotte T., Deuschel J. -D. On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to ∇ϕ interface model. Probab Theory Related Fields, 2005, 133: 358-390

[7]

Durrett R. T. Probability: Theory and Examples, 2005 3rd ed. Belmont: Brooks/Cole

[8]

Ferreira I. The probability of survival for the biased voter model in a random environment. Stochastic Process Appl, 1990, 34: 25-38

[9]

Krishnapur M., Peres Y. Recurrent graphs where two independent random walks collide finitely often. Electron Commun Probab, 2004, 9: 72-81

[10]

Liggett T. M. Interacting Particle Systems, 1985, New York: Springer-Verlag

AI Summary AI Mindmap
PDF (156KB)

876

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/