![](/develop/static/imgs/pdf.png)
Optimal portfolio and consumption selection with default risk
Lijun BO, Yongjin WANG, Xuewei YANG
Optimal portfolio and consumption selection with default risk
We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi- Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations.
Defaultable security / average past consumption / Hamilton-Jacobi- Bellman (HJB) equation / post(pre)-default / constrained viscosity solution
[1] |
Atar R, Budhiraja A, Williams R J. HJB equations for certain singularly controlled diffusions. Ann Appl Probab, 2007, 17(5-6): 1745-1776
CrossRef
Google scholar
|
[2] |
Bélanger A, Shreve S, Wong D. A general framework for pricing credit risk. Math Finance, 2004, 14(3): 317-350
CrossRef
Google scholar
|
[3] |
Benth F E, Karlsen K H, Reikvam K. Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach. Finance Stoch, 2001, 5: 275-303
CrossRef
Google scholar
|
[4] |
Biagini F, Cretarola A. Quadratic hedging methods for defaultable claims. Appl Math Optim, 2007, 56(3): 425-443
CrossRef
Google scholar
|
[5] |
Biagini F, Cretarola A. Local risk-minimization for defaultable claims with recovery process. Appl Math Optim, 2012, 65(3): 293-314
CrossRef
Google scholar
|
[6] |
Bielecki T, Jang I. Portfolio optimization with a defaultable security. Asia-Pacific Finan Markets, 2006, 13: 113-127
CrossRef
Google scholar
|
[7] |
Bielecki T, Jeanblanc M, Rutkowski M. Hedging for Defaultable Claims. Lecture Notes in Math, Vol 1847. Berlin: Springer, 2004
|
[8] |
Bielecki T, Jeanblanc M, Rutkowski M. Credit Risk Modeling. CSFI Lecture Notes Series. Osaka: Osaka University Press, 2009
|
[9] |
Bielecki T, Rutkowski M. Credit Risk: Modeling, Valuation and Hedging. New York: Springer, 2002
|
[10] |
Bo L, Wang Y, Yang X. An optimal portfolio problem in a defaultable market. Adv Appl Probab, 2010, 42(3): 689-705
CrossRef
Google scholar
|
[11] |
Crandall M G, Ishii H, Lions P L. User's guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc, 1992, 27(1): 1-67
CrossRef
Google scholar
|
[12] |
Crandall M G, Lions P L. Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc, 1983, 277(1): 1-42
CrossRef
Google scholar
|
[13] |
Fleming W H, Soner H M. Control Markov Processes and Viscosity Solutions. New York: Springer-Verlag, 1993
|
[14] |
Giesecke K. Default and information. J Economic Dyn Control, 2006, 30: 2281-2303
CrossRef
Google scholar
|
[15] |
Hindy A, Huang C. Optimal consumption and portfolio rules with durability and local substitution. Econometrica, 1993, 61: 85-122
CrossRef
Google scholar
|
[16] |
Hou Y, Jin X. Optimal investment with default risk. FAME Research Paper, No 46, Switzerland, 2002
|
[17] |
Ishikawa Y. Optimal control problem associated with jump processes. Appl Math Optim, 2004, 50: 21-65
CrossRef
Google scholar
|
[18] |
Jang I. Portfolio Optimization with Defaultable Securities. <DissertationTip/>. The Univ of Illinois at Chicago, 2005
|
[19] |
Jarrow R, Lando D, Yu F. Default risk and diversification: Theory and applications. Math Finan, 2005, 51: 1-26
CrossRef
Google scholar
|
[20] |
Jeanblanc M, Rutkowski M. Modelling of default risk: mathematical tools. Department of Mathematics, Université d'Evry, 2002, Preprint
|
[21] |
Jeanblanc M, Yor M, Chesney M. Mathematical Methods for Financial Markets. Berlin: Springer, 2009
CrossRef
Google scholar
|
[22] |
Jiao Y, Pham H. Optimal investment with counterparty risk: a default-density modeling approach. Finance Stoch, 2011, 15(4): 725-753
CrossRef
Google scholar
|
[23] |
Korn R, Kraft H. Optimal portfolios with defaultable securities: A firm value approach. Int J Theor Appl Finance, 2003, 6: 793-819
CrossRef
Google scholar
|
[24] |
Lakner P, Liang W. Optimal investment in a defaultable bond. Math Financ Econ, 2008, 1: 283-310
CrossRef
Google scholar
|
[25] |
Lando D. Credit Risk Modeling-Theory and Applications. Princeton and Oxford: Princeton University Press, 2004
|
[26] |
Lions P L. Optimal control of diffusion processes and Hamilton-Bellman equations, Part 1: The dynamics programming principle and applications. Comm Partial Differential Equations, 1983, 8(10): 1101-1174
CrossRef
Google scholar
|
[27] |
Lions P L. Optimal control of diffusion processes and Hamilton-Bellman equations, Part 2: Viscosity solutions and uniqueness. Comm Partial Differential Equations, 1983, 8(11): 1229-1276
CrossRef
Google scholar
|
[28] |
Protter P. Stochastic Integration and Differential Equations. Berlin: Springer, 1990
|
[29] |
Soner H M. Optimal control with state-space constraint, I. SIAM J Control Optim, 1986, 24(3): 552-561
CrossRef
Google scholar
|
[30] |
Steffensen K. Asset allocation with contagion and explicit bankruptcy procedures. J Math Econom, 2009, 45: 147-167
CrossRef
Google scholar
|
/
〈 |
|
〉 |