Optimal portfolio and consumption selection with default risk

Lijun Bo , Yongjin Wang , Xuewei Yang

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1019 -1042.

PDF (210KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1019 -1042. DOI: 10.1007/s11464-012-0224-3
Research Article
RESEARCH ARTICLE

Optimal portfolio and consumption selection with default risk

Author information +
History +
PDF (210KB)

Abstract

We investigate an optimal portfolio and consumption choice problem with a defaultable security. Under the goal of maximizing the expected discounted utility of the average past consumption, a dynamic programming principle is applied to derive a pair of second-order parabolic Hamilton-Jacobi-Bellman (HJB) equations with gradient constraints. We explore these HJB equations by a viscosity solution approach and characterize the post-default and pre-default value functions as a unique pair of constrained viscosity solutions to the HJB equations.

Keywords

Defaultable security / average past consumption / Hamilton-Jacobi-Bellman (HJB) equation / post(pre)-default / constrained viscosity solution

Cite this article

Download citation ▾
Lijun Bo, Yongjin Wang, Xuewei Yang. Optimal portfolio and consumption selection with default risk. Front. Math. China, 2012, 7(6): 1019-1042 DOI:10.1007/s11464-012-0224-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atar R., Budhiraja A., Williams R. J. HJB equations for certain singularly controlled diffusions. Ann Appl Probab, 2007, 17(5–6): 1745-1776

[2]

Bélanger A., Shreve S., Wong D. A general framework for pricing credit risk. Math Finance, 2004, 14(3): 317-350

[3]

Benth F. E., Karlsen K. H., Reikvam K. Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach. Finance Stoch, 2001, 5: 275-303

[4]

Biagini F., Cretarola A. Quadratic hedging methods for defaultable claims. Appl Math Optim, 2007, 56(3): 425-443

[5]

Biagini F., Cretarola A. Local risk-minimization for defaultable claims with recovery process. Appl Math Optim, 2012, 65(3): 293-314

[6]

Bielecki T., Jang I. Portfolio optimization with a defaultable security. Asia-Pacific Finan Markets, 2006, 13: 113-127

[7]

Bielecki T., Jeanblanc M., Rutkowski M. Hedging for Defaultable Claims, 2004, Berlin: Springer

[8]

Bielecki T., Jeanblanc M., Rutkowski M. Credit Risk Modeling, 2009, Osaka: Osaka University Press

[9]

Bielecki T., Rutkowski M. Credit Risk: Modeling, Valuation and Hedging, 2002, New York: Springer

[10]

Bo L., Wang Y., Yang X. An optimal portfolio problem in a defaultable market. Adv Appl Probab, 2010, 42(3): 689-705

[11]

Crandall M. G., Ishii H., Lions P. L. User’s guide to viscosity solutions of second order partial differential equations. Bull Amer Math Soc, 1992, 27(1): 1-67

[12]

Crandall M. G., Lions P. L. Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc, 1983, 277(1): 1-42

[13]

Fleming W. H., Soner H. M. Control Markov Processes and Viscosity Solutions, 1993, New York: Springer-Verlag

[14]

Giesecke K. Default and information. J Economic Dyn Control, 2006, 30: 2281-2303

[15]

Hindy A., Huang C. Optimal consumption and portfolio rules with durability and local substitution. Econometrica, 1993, 61: 85-122

[16]

Hou Y, Jin X. Optimal investment with default risk. FAME Research Paper, No 46, Switzerland, 2002

[17]

Ishikawa Y. Optimal control problem associated with jump processes. Appl Math Optim, 2004, 50: 21-65

[18]

Jang I. Portfolio Optimization with Defaultable Securities. Ph D Thesis. The Univ of Illinois at Chicago, 2005

[19]

Jarrow R., Lando D., Yu F. Default risk and diversification: Theory and applications. Math Finan, 2005, 51: 1-26

[20]

Jeanblanc M, Rutkowski M. Modelling of default risk: mathematical tools. Department of Mathematics, Université d’Evry, 2002, Preprint

[21]

Jeanblanc M., Yor M., Chesney M. Mathematical Methods for Financial Markets, 2009, Berlin: Springer

[22]

Jiao Y., Pham H. Optimal investment with counterparty risk: a default-density modeling approach. Finance Stoch, 2011, 15(4): 725-753

[23]

Korn R., Kraft H. Optimal portfolios with defaultable securities: A firm value approach. Int J Theor Appl Finance, 2003, 6: 793-819

[24]

Lakner P., Liang W. Optimal investment in a defaultable bond. Math Financ Econ, 2008, 1: 283-310

[25]

Lando D. Credit Risk Modeling-Theory and Applications, 2004, Princeton and Oxford: Princeton University Press

[26]

Lions P. L. Optimal control of diffusion processes and Hamilton-Bellman equations, Part 1: The dynamics programming principle and applications. Comm Partial Differential Equations, 1983, 8(10): 1101-1174

[27]

Lions P. L. Optimal control of diffusion processes and Hamilton-Bellman equations, Part 2: Viscosity solutions and uniqueness. Comm Partial Differential Equations, 1983, 8(11): 1229-1276

[28]

Protter P. Stochastic Integration and Differential Equations, 1990, Berlin: Springer

[29]

Soner H. M. Optimal control with state-space constraint, I. SIAM J Control Optim, 1986, 24(3): 552-561

[30]

Steffensen K. Asset allocation with contagion and explicit bankruptcy procedures. J Math Econom, 2009, 45: 147-167

AI Summary AI Mindmap
PDF (210KB)

816

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/