Constructions of optimal variable-weight OOCs via quadratic residues
Yan LIU, Dianhua WU
Constructions of optimal variable-weight OOCs via quadratic residues
Variable-weight optical orthogonal code (OOC) was introduced by G. C. Yang [IEEE Trans. Commun., 1996, 44: 47-55] for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, seven new infinite classes of optimal (v, {3, 4, 6}, 1,Q)-OOCs are constructed.
Cyclic packing / optical orthogonal code (OOC) / quadratic residue / relative difference family / variable-weight OOC
[1] |
Abel R J R, Buratti M. Some progress on (v, 4, 1) difference families and optical orthogonal codes. J Combin Theory, 2004, 106: 59-75
CrossRef
Google scholar
|
[2] |
Bitan S, Etzion T. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans Inform Theory, 1995, 41: 77-87
CrossRef
Google scholar
|
[3] |
Brickell E F, Wei V. Optical orthogonal codes and cyclic block designs. Congr Numer, 1987, 58: 175-182
|
[4] |
Buratti M. Recursive constructions for difference matrices and relative difference families. J Combin Des, 1988, 6: 165-182
CrossRef
Google scholar
|
[5] |
Buratti M. Pairwise balanced designs from finite fields. Discrete Math, 1999, 208/209: 103-117
CrossRef
Google scholar
|
[6] |
Buratti M. Old and new designs via strong difference families. J Combin Des, 1999, 7: 406-425
CrossRef
Google scholar
|
[7] |
Buratti M. On point-regular linear spaces. J Statist Plann Inference, 2001, 94: 139-146
CrossRef
Google scholar
|
[8] |
Buratti M. Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des Codes Cryptogr, 2002, 26: 111-125
CrossRef
Google scholar
|
[9] |
Buratti M, Gionfriddo L. Strong difference families over arbitrary graphs. J Combin Des, 2008, 16: 443-461
CrossRef
Google scholar
|
[10] |
Buratti M, Pasotti A. Graph decompositions with the use of difference matrices. Bull Inst Combin Appl, 2006, 47: 23-32
|
[11] |
Buratti M, Wei Y, Wu D, Fan P, Cheng M. Relative difference families with variable block sizes and their related OOCs. IEEE Trans Inform Theory, 2011, 57: 7489-7497
CrossRef
Google scholar
|
[12] |
Chang Y, Fuji-Hara R, Miao Y. Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans Inform Theory, 2003, 49: 1283-1292
CrossRef
Google scholar
|
[13] |
Chang Y, Ji L. Optimal (4up, 5, 1) optical orthogonal codes. J Combin Des, 2004, 12: 346-361
CrossRef
Google scholar
|
[14] |
Chang Y, Miao Y. Constructions for optimal optical orthogonal codes. Discrete Math, 2003, 261: 127-139
CrossRef
Google scholar
|
[15] |
Chen K, Ge G, Zhu L. Starters and related codes. J Statist Plann Inference, 2000, 86: 379-395
CrossRef
Google scholar
|
[16] |
Chen K, Zhu L. Existence of (q, 6, 1) difference families with qa prime power. Des Codes Cryptogr, 1998, 15: 167-174
CrossRef
Google scholar
|
[17] |
Chu W, Colbourn C J. Recursive constructions for optimal (n, 4, 2)-OOCs. J Combin Des, 2004, 12: 333-345
CrossRef
Google scholar
|
[18] |
Chu W, Golomb S W. A new recursive construction for optical orthogonal codes. IEEE Trans Inform Theory, 2003, 49: 3072-3076
CrossRef
Google scholar
|
[19] |
Chung F R K, Salehi J A, Wei V K. Optical orthogonal codes: Design, analysis, and applications. IEEE Trans Inform Theory, 1989, 35: 595-604
CrossRef
Google scholar
|
[20] |
Chung H, Kumar P V. Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans Inform Theory, 1990, 36: 866-873
CrossRef
Google scholar
|
[21] |
Fuji-Hara F, Miao Y. Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans Inform Theory, 2000, 46: 2396-2406
CrossRef
Google scholar
|
[22] |
Fuji-Hara F, Miao Y, Yin J. Optimal (9v, 4, 1) optical orthogonal codes. SIAM J Discrete Math, 2001, 14: 256-266
CrossRef
Google scholar
|
[23] |
Ge G, Yin J. Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2001, 47: 2998-3004
CrossRef
Google scholar
|
[24] |
Golomb S W. Digital Communication with Space Application. Los Altos: Penisula, 1982
|
[25] |
Gu F R, Wu J. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J Lightw Technol, 2005, 23: 740-748
CrossRef
Google scholar
|
[26] |
Jiang J, Wu D, Fan P. General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans Inform Theory, 2011, 7: 4488-4496
CrossRef
Google scholar
|
[27] |
Ma S, Chang Y. A new class of optimal optical orthogonal codes with weight five. IEEE Trans Inform Theory, 2004, 50: 1848-1850
CrossRef
Google scholar
|
[28] |
Ma S, Chang Y. Constructions of optimal optical orthogonal codes with weight five. J Combin Des, 2005, 13: 54-69
CrossRef
Google scholar
|
[29] |
Massey J L, Mathys P. The collision channel without feedback. IEEE Trans Inform Theory, 1985, 31: 192-204
CrossRef
Google scholar
|
[30] |
Mishima M, Fu H L, Uruno S. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3. Des Codes Cryptogr, 2009, 52: 275-291
CrossRef
Google scholar
|
[31] |
Momihara K. Necessary and sufficient conditions for tight equi-difference conflict avoiding codes of weight three. Des Codes Cryptogr, 2007, 45: 379-390
CrossRef
Google scholar
|
[32] |
Momihara K. On cyclic 2(k-1)-support (n, k)k-1 difference families. Finite Fields Appl, 2009, 15: 415-427
CrossRef
Google scholar
|
[33] |
Momihara K. Strong difference families, difference covers, and their applications for relative difference families. Des Codes Cryptogr, 2009, 51: 253-273
CrossRef
Google scholar
|
[34] |
Momihara K. New optimal optical orthogonal codes by restrictions to subgroups. Finite Fields Appl, 2011, 17: 166-182
CrossRef
Google scholar
|
[35] |
Momihara K, Buratti M. Bounds and constructions of optimal (n, 4, 2, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2009, 55: 514-523
CrossRef
Google scholar
|
[36] |
Momihara K, Müller M, Satoh J, Jimbo M. Constant weight conflict-avoiding codes. SIAM J Discrete Math, 2007, 21: 959-979
CrossRef
Google scholar
|
[37] |
Salehi J A. Code division multiple access techniques in optical fiber networks—Part I Fundamental principles. IEEE Trans Commun, 1989, 37: 824-833
CrossRef
Google scholar
|
[38] |
Salehi J A. Emerging optical code-division multiple-access communications systems. IEEE Network, 1989, 3: 31-39
CrossRef
Google scholar
|
[39] |
Salehi J A, Brackett C A. Code division multiple access techniques in optical fiber networks—Part II Systems performance analysis. IEEE Trans Commun, 1989, 37: 834-842
CrossRef
Google scholar
|
[40] |
Vecchi M P, Salehi J A. Neuromorphic networks based on sparse optical orthogonal codes. In: Neural Information Processing Systems—Natural and Synthetic. New York: Amer Inst Phys, 1988, 814-823
|
[41] |
Wu D, Fan P, Li H, Parampalli U. Optimal variable-weight optical orthogonal codes via cyclic difference families. In: Proc 2009 IEEE International Symposium on Information Theory ISIT’9, June 28-July 3. 2009, 448-452
CrossRef
Google scholar
|
[42] |
Wu D, Zhao H, Fan P, Shinohara S. Optimal variable-weight optical orthogonal codes via difference packings. IEEE Trans Inform Theory, 2010, 56: 4053-4060
CrossRef
Google scholar
|
[43] |
Yang G C. Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. GLOBECOM ’93, IEEE, 1993, 1: 488-492
|
[44] |
Yang G C. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans Commun, 1996, 44: 47-55
CrossRef
Google scholar
|
[45] |
Yang G C, Fuja T E. Optical orthogonal codes with unequal auto- and cross-correlation constraints. IEEE Trans Inform Theory, 1995, 41: 96-106
CrossRef
Google scholar
|
[46] |
Yin J. Some combinatorial constructions for optical orthogonal codes. Discrete Math, 1998, 185: 201-219
CrossRef
Google scholar
|
[47] |
Zhao H, Wu D, Fan P. Construction of optimal variable-weight optical orthogonal codes. J Combin Des, 2010, 18: 274-291
CrossRef
Google scholar
|
/
〈 | 〉 |