Constructions of optimal variable-weight OOCs via quadratic residues

Yan LIU, Dianhua WU

PDF(167 KB)
PDF(167 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (4) : 869-890. DOI: 10.1007/s11464-012-0220-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructions of optimal variable-weight OOCs via quadratic residues

Author information +
History +

Abstract

Variable-weight optical orthogonal code (OOC) was introduced by G. C. Yang [IEEE Trans. Commun., 1996, 44: 47-55] for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, seven new infinite classes of optimal (v, {3, 4, 6}, 1,Q)-OOCs are constructed.

Keywords

Cyclic packing / optical orthogonal code (OOC) / quadratic residue / relative difference family / variable-weight OOC

Cite this article

Download citation ▾
Yan LIU, Dianhua WU. Constructions of optimal variable-weight OOCs via quadratic residues. Front Math Chin, 2013, 8(4): 869‒890 https://doi.org/10.1007/s11464-012-0220-7

References

[1]
Abel R J R, Buratti M. Some progress on (v, 4, 1) difference families and optical orthogonal codes. J Combin Theory, 2004, 106: 59-75
CrossRef Google scholar
[2]
Bitan S, Etzion T. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans Inform Theory, 1995, 41: 77-87
CrossRef Google scholar
[3]
Brickell E F, Wei V. Optical orthogonal codes and cyclic block designs. Congr Numer, 1987, 58: 175-182
[4]
Buratti M. Recursive constructions for difference matrices and relative difference families. J Combin Des, 1988, 6: 165-182
CrossRef Google scholar
[5]
Buratti M. Pairwise balanced designs from finite fields. Discrete Math, 1999, 208/209: 103-117
CrossRef Google scholar
[6]
Buratti M. Old and new designs via strong difference families. J Combin Des, 1999, 7: 406-425
CrossRef Google scholar
[7]
Buratti M. On point-regular linear spaces. J Statist Plann Inference, 2001, 94: 139-146
CrossRef Google scholar
[8]
Buratti M. Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des Codes Cryptogr, 2002, 26: 111-125
CrossRef Google scholar
[9]
Buratti M, Gionfriddo L. Strong difference families over arbitrary graphs. J Combin Des, 2008, 16: 443-461
CrossRef Google scholar
[10]
Buratti M, Pasotti A. Graph decompositions with the use of difference matrices. Bull Inst Combin Appl, 2006, 47: 23-32
[11]
Buratti M, Wei Y, Wu D, Fan P, Cheng M. Relative difference families with variable block sizes and their related OOCs. IEEE Trans Inform Theory, 2011, 57: 7489-7497
CrossRef Google scholar
[12]
Chang Y, Fuji-Hara R, Miao Y. Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans Inform Theory, 2003, 49: 1283-1292
CrossRef Google scholar
[13]
Chang Y, Ji L. Optimal (4up, 5, 1) optical orthogonal codes. J Combin Des, 2004, 12: 346-361
CrossRef Google scholar
[14]
Chang Y, Miao Y. Constructions for optimal optical orthogonal codes. Discrete Math, 2003, 261: 127-139
CrossRef Google scholar
[15]
Chen K, Ge G, Zhu L. Starters and related codes. J Statist Plann Inference, 2000, 86: 379-395
CrossRef Google scholar
[16]
Chen K, Zhu L. Existence of (q, 6, 1) difference families with qa prime power. Des Codes Cryptogr, 1998, 15: 167-174
CrossRef Google scholar
[17]
Chu W, Colbourn C J. Recursive constructions for optimal (n, 4, 2)-OOCs. J Combin Des, 2004, 12: 333-345
CrossRef Google scholar
[18]
Chu W, Golomb S W. A new recursive construction for optical orthogonal codes. IEEE Trans Inform Theory, 2003, 49: 3072-3076
CrossRef Google scholar
[19]
Chung F R K, Salehi J A, Wei V K. Optical orthogonal codes: Design, analysis, and applications. IEEE Trans Inform Theory, 1989, 35: 595-604
CrossRef Google scholar
[20]
Chung H, Kumar P V. Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans Inform Theory, 1990, 36: 866-873
CrossRef Google scholar
[21]
Fuji-Hara F, Miao Y. Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans Inform Theory, 2000, 46: 2396-2406
CrossRef Google scholar
[22]
Fuji-Hara F, Miao Y, Yin J. Optimal (9v, 4, 1) optical orthogonal codes. SIAM J Discrete Math, 2001, 14: 256-266
CrossRef Google scholar
[23]
Ge G, Yin J. Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2001, 47: 2998-3004
CrossRef Google scholar
[24]
Golomb S W. Digital Communication with Space Application. Los Altos: Penisula, 1982
[25]
Gu F R, Wu J. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J Lightw Technol, 2005, 23: 740-748
CrossRef Google scholar
[26]
Jiang J, Wu D, Fan P. General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans Inform Theory, 2011, 7: 4488-4496
CrossRef Google scholar
[27]
Ma S, Chang Y. A new class of optimal optical orthogonal codes with weight five. IEEE Trans Inform Theory, 2004, 50: 1848-1850
CrossRef Google scholar
[28]
Ma S, Chang Y. Constructions of optimal optical orthogonal codes with weight five. J Combin Des, 2005, 13: 54-69
CrossRef Google scholar
[29]
Massey J L, Mathys P. The collision channel without feedback. IEEE Trans Inform Theory, 1985, 31: 192-204
CrossRef Google scholar
[30]
Mishima M, Fu H L, Uruno S. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3. Des Codes Cryptogr, 2009, 52: 275-291
CrossRef Google scholar
[31]
Momihara K. Necessary and sufficient conditions for tight equi-difference conflict avoiding codes of weight three. Des Codes Cryptogr, 2007, 45: 379-390
CrossRef Google scholar
[32]
Momihara K. On cyclic 2(k-1)-support (n, k)k-1 difference families. Finite Fields Appl, 2009, 15: 415-427
CrossRef Google scholar
[33]
Momihara K. Strong difference families, difference covers, and their applications for relative difference families. Des Codes Cryptogr, 2009, 51: 253-273
CrossRef Google scholar
[34]
Momihara K. New optimal optical orthogonal codes by restrictions to subgroups. Finite Fields Appl, 2011, 17: 166-182
CrossRef Google scholar
[35]
Momihara K, Buratti M. Bounds and constructions of optimal (n, 4, 2, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2009, 55: 514-523
CrossRef Google scholar
[36]
Momihara K, Müller M, Satoh J, Jimbo M. Constant weight conflict-avoiding codes. SIAM J Discrete Math, 2007, 21: 959-979
CrossRef Google scholar
[37]
Salehi J A. Code division multiple access techniques in optical fiber networks—Part I Fundamental principles. IEEE Trans Commun, 1989, 37: 824-833
CrossRef Google scholar
[38]
Salehi J A. Emerging optical code-division multiple-access communications systems. IEEE Network, 1989, 3: 31-39
CrossRef Google scholar
[39]
Salehi J A, Brackett C A. Code division multiple access techniques in optical fiber networks—Part II Systems performance analysis. IEEE Trans Commun, 1989, 37: 834-842
CrossRef Google scholar
[40]
Vecchi M P, Salehi J A. Neuromorphic networks based on sparse optical orthogonal codes. In: Neural Information Processing Systems—Natural and Synthetic. New York: Amer Inst Phys, 1988, 814-823
[41]
Wu D, Fan P, Li H, Parampalli U. Optimal variable-weight optical orthogonal codes via cyclic difference families. In: Proc 2009 IEEE International Symposium on Information Theory ISIT’9, June 28-July 3. 2009, 448-452
CrossRef Google scholar
[42]
Wu D, Zhao H, Fan P, Shinohara S. Optimal variable-weight optical orthogonal codes via difference packings. IEEE Trans Inform Theory, 2010, 56: 4053-4060
CrossRef Google scholar
[43]
Yang G C. Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. GLOBECOM ’93, IEEE, 1993, 1: 488-492
[44]
Yang G C. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans Commun, 1996, 44: 47-55
CrossRef Google scholar
[45]
Yang G C, Fuja T E. Optical orthogonal codes with unequal auto- and cross-correlation constraints. IEEE Trans Inform Theory, 1995, 41: 96-106
CrossRef Google scholar
[46]
Yin J. Some combinatorial constructions for optical orthogonal codes. Discrete Math, 1998, 185: 201-219
CrossRef Google scholar
[47]
Zhao H, Wu D, Fan P. Construction of optimal variable-weight optical orthogonal codes. J Combin Des, 2010, 18: 274-291
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/