Constructions of optimal variable-weight OOCs via quadratic residues

Yan Liu , Dianhua Wu

Front. Math. China ›› 2012, Vol. 8 ›› Issue (4) : 869 -890.

PDF (167KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (4) : 869 -890. DOI: 10.1007/s11464-012-0220-7
Research Article
RESEARCH ARTICLE

Constructions of optimal variable-weight OOCs via quadratic residues

Author information +
History +
PDF (167KB)

Abstract

Variable-weight optical orthogonal code (OOC) was introduced by G. C. Yang [IEEE Trans. Commun., 1996, 44: 47–55] for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, seven new infinite classes of optimal (v, {3, 4, 6}, 1,Q)-OOCs are constructed.

Keywords

Cyclic packing / optical orthogonal code (OOC) / quadratic residue / relative difference family / variable-weight OOC

Cite this article

Download citation ▾
Yan Liu, Dianhua Wu. Constructions of optimal variable-weight OOCs via quadratic residues. Front. Math. China, 2012, 8(4): 869-890 DOI:10.1007/s11464-012-0220-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abel R. J. R., Buratti M.. Some progress on (v, 4, 1) difference families and optical orthogonal codes. J Combin Theory, 2004, 106: 59-75

[2]

Bitan S., Etzion T.. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans Inform Theory, 1995, 41: 77-87

[3]

Brickell E. F., Wei V.. Optical orthogonal codes and cyclic block designs. Congr Numer, 1987, 58: 175-182

[4]

Buratti M.. Recursive constructions for difference matrices and relative difference families. J Combin Des, 1988, 6: 165-182

[5]

Buratti M.. Pairwise balanced designs from finite fields. Discrete Math, 1999, 208/(209): 103-117

[6]

Buratti M.. Old and new designs via strong difference families. J Combin Des, 1999, 7: 406-425

[7]

Buratti M.. On point-regular linear spaces. J Statist Plann Inference, 2001, 94: 139-146

[8]

Buratti M.. Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des Codes Cryptogr, 2002, 26: 111-125

[9]

Buratti M., Gionfriddo L.. Strong difference families over arbitrary graphs. J Combin Des, 2008, 16: 443-461

[10]

Buratti M., Pasotti A.. Graph decompositions with the use of difference matrices. Bull Inst Combin Appl, 2006, 47: 23-32

[11]

Buratti M., Wei Y., Wu D., Fan P., Cheng M.. Relative difference families with variable block sizes and their related OOCs. IEEE Trans Inform Theory, 2011, 57: 7489-7497

[12]

Chang Y., Fuji-Hara R., Miao Y.. Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans Inform Theory, 2003, 49: 1283-1292

[13]

Chang Y., Ji L.. Optimal (4up, 5, 1) optical orthogonal codes. J Combin Des, 2004, 12: 346-361

[14]

Chang Y., Miao Y.. Constructions for optimal optical orthogonal codes. Discrete Math, 2003, 261: 127-139

[15]

Chen K., Ge G., Zhu L.. Starters and related codes. J Statist Plann Inference, 2000, 86: 379-395

[16]

Chen K., Zhu L.. Existence of (q, 6, 1) difference families with q a prime power. Des Codes Cryptogr, 1998, 15: 167-174

[17]

Chu W., Colbourn C. J.. Recursive constructions for optimal (n, 4, 2)-OOCs. J Combin Des, 2004, 12: 333-345

[18]

Chu W., Golomb S. W.. A new recursive construction for optical orthogonal codes. IEEE Trans Inform Theory, 2003, 49: 3072-3076

[19]

Chung F. R. K., Salehi J. A., Wei V. K.. Optical orthogonal codes: Design, analysis, and applications. IEEE Trans Inform Theory, 1989, 35: 595-604

[20]

Chung H., Kumar P. V.. Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans Inform Theory, 1990, 36: 866-873

[21]

Fuji-Hara F., Miao Y.. Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans Inform Theory, 2000, 46: 2396-2406

[22]

Fuji-Hara F., Miao Y., Yin J.. Optimal (9v, 4, 1) optical orthogonal codes. SIAM J Discrete Math, 2001, 14: 256-266

[23]

Ge G., Yin J.. Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2001, 47: 2998-3004

[24]

Golomb S. W.. Digital Communication with Space Application, 1982, Los Altos: Penisula

[25]

Gu F. R., Wu J.. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J Lightw Technol, 2005, 23: 740-748

[26]

Jiang J., Wu D., Fan P.. General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans Inform Theory, 2011, 7: 4488-4496

[27]

Ma S., Chang Y.. A new class of optimal optical orthogonal codes with weight five. IEEE Trans Inform Theory, 2004, 50: 1848-1850

[28]

Ma S., Chang Y.. Constructions of optimal optical orthogonal codes with weight five. J Combin Des, 2005, 13: 54-69

[29]

Massey J. L., Mathys P.. The collision channel without feedback. IEEE Trans Inform Theory, 1985, 31: 192-204

[30]

Mishima M., Fu H. L., Uruno S.. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3. Des Codes Cryptogr, 2009, 52: 275-291

[31]

Momihara K.. Necessary and sufficient conditions for tight equi-difference conflict avoiding codes of weight three. Des Codes Cryptogr, 2007, 45: 379-390

[32]

Momihara K.. On cyclic 2(k − 1)-support (n, k)k−1 difference families. Finite Fields Appl, 2009, 15: 415-427

[33]

Momihara K.. Strong difference families, difference covers, and their applications for relative difference families. Des Codes Cryptogr, 2009, 51: 253-273

[34]

Momihara K.. New optimal optical orthogonal codes by restrictions to subgroups. Finite Fields Appl, 2011, 17: 166-182

[35]

Momihara K., Buratti M.. Bounds and constructions of optimal (n, 4, 2, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2009, 55: 514-523

[36]

Momihara K., Müller M., Satoh J., Jimbo M.. Constant weight conflict-avoiding codes. SIAM J Discrete Math, 2007, 21: 959-979

[37]

Salehi J. A.. Code division multiple access techniques in optical fiber networks-Part I Fundamental principles. IEEE Trans Commun, 1989, 37: 824-833

[38]

Salehi J. A.. Emerging optical code-division multiple-access communications systems. IEEE Network, 1989, 3: 31-39

[39]

Salehi J. A., Brackett C. A.. Code division multiple access techniques in optical fiber networks-Part II Systems performance analysis. IEEE Trans Commun, 1989, 37: 834-842

[40]

Vecchi M. P., Salehi J. A.. Neuromorphic networks based on sparse optical orthogonal codes. Neural Information Processing Systems-Natural and Synthetic, 1988, New York: Amer Inst Phys 814 823

[41]

Wu D, Fan P, Li H, Parampalli U. Optimal variable-weight optical orthogonal codes via cyclic difference families. In: Proc 2009 IEEE International Symposium on Information Theory ISIT’09, June 28–July 3. 2009, 448–452

[42]

Wu D., Zhao H., Fan P., Shinohara S.. Optimal variable-weight optical orthogonal codes via difference packings. IEEE Trans Inform Theory, 2010, 56: 4053-4060

[43]

Yang G. C.. Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. GLOBECOM’ 93, IEEE, 1993, 1: 488-492

[44]

Yang G. C.. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans Commun, 1996, 44: 47-55

[45]

Yang G. C., Fuja T. E.. Optical orthogonal codes with unequal auto- and cross-correlation constraints. IEEE Trans Inform Theory, 1995, 41: 96-106

[46]

Yin J.. Some combinatorial constructions for optical orthogonal codes. Discrete Math, 1998, 185: 201-219

[47]

Zhao H., Wu D., Fan P.. Construction of optimal variable-weight optical orthogonal codes. J Combin Des, 2010, 18: 274-291

AI Summary AI Mindmap
PDF (167KB)

735

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/