PDF
(167KB)
Abstract
Variable-weight optical orthogonal code (OOC) was introduced by G. C. Yang [IEEE Trans. Commun., 1996, 44: 47–55] for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, seven new infinite classes of optimal (v, {3, 4, 6}, 1,Q)-OOCs are constructed.
Keywords
Cyclic packing
/
optical orthogonal code (OOC)
/
quadratic residue
/
relative difference family
/
variable-weight OOC
Cite this article
Download citation ▾
Yan Liu, Dianhua Wu.
Constructions of optimal variable-weight OOCs via quadratic residues.
Front. Math. China, 2012, 8(4): 869-890 DOI:10.1007/s11464-012-0220-7
| [1] |
Abel R. J. R., Buratti M.. Some progress on (v, 4, 1) difference families and optical orthogonal codes. J Combin Theory, 2004, 106: 59-75
|
| [2] |
Bitan S., Etzion T.. Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans Inform Theory, 1995, 41: 77-87
|
| [3] |
Brickell E. F., Wei V.. Optical orthogonal codes and cyclic block designs. Congr Numer, 1987, 58: 175-182
|
| [4] |
Buratti M.. Recursive constructions for difference matrices and relative difference families. J Combin Des, 1988, 6: 165-182
|
| [5] |
Buratti M.. Pairwise balanced designs from finite fields. Discrete Math, 1999, 208/(209): 103-117
|
| [6] |
Buratti M.. Old and new designs via strong difference families. J Combin Des, 1999, 7: 406-425
|
| [7] |
Buratti M.. On point-regular linear spaces. J Statist Plann Inference, 2001, 94: 139-146
|
| [8] |
Buratti M.. Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des Codes Cryptogr, 2002, 26: 111-125
|
| [9] |
Buratti M., Gionfriddo L.. Strong difference families over arbitrary graphs. J Combin Des, 2008, 16: 443-461
|
| [10] |
Buratti M., Pasotti A.. Graph decompositions with the use of difference matrices. Bull Inst Combin Appl, 2006, 47: 23-32
|
| [11] |
Buratti M., Wei Y., Wu D., Fan P., Cheng M.. Relative difference families with variable block sizes and their related OOCs. IEEE Trans Inform Theory, 2011, 57: 7489-7497
|
| [12] |
Chang Y., Fuji-Hara R., Miao Y.. Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans Inform Theory, 2003, 49: 1283-1292
|
| [13] |
Chang Y., Ji L.. Optimal (4up, 5, 1) optical orthogonal codes. J Combin Des, 2004, 12: 346-361
|
| [14] |
Chang Y., Miao Y.. Constructions for optimal optical orthogonal codes. Discrete Math, 2003, 261: 127-139
|
| [15] |
Chen K., Ge G., Zhu L.. Starters and related codes. J Statist Plann Inference, 2000, 86: 379-395
|
| [16] |
Chen K., Zhu L.. Existence of (q, 6, 1) difference families with q a prime power. Des Codes Cryptogr, 1998, 15: 167-174
|
| [17] |
Chu W., Colbourn C. J.. Recursive constructions for optimal (n, 4, 2)-OOCs. J Combin Des, 2004, 12: 333-345
|
| [18] |
Chu W., Golomb S. W.. A new recursive construction for optical orthogonal codes. IEEE Trans Inform Theory, 2003, 49: 3072-3076
|
| [19] |
Chung F. R. K., Salehi J. A., Wei V. K.. Optical orthogonal codes: Design, analysis, and applications. IEEE Trans Inform Theory, 1989, 35: 595-604
|
| [20] |
Chung H., Kumar P. V.. Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans Inform Theory, 1990, 36: 866-873
|
| [21] |
Fuji-Hara F., Miao Y.. Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans Inform Theory, 2000, 46: 2396-2406
|
| [22] |
Fuji-Hara F., Miao Y., Yin J.. Optimal (9v, 4, 1) optical orthogonal codes. SIAM J Discrete Math, 2001, 14: 256-266
|
| [23] |
Ge G., Yin J.. Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2001, 47: 2998-3004
|
| [24] |
Golomb S. W.. Digital Communication with Space Application, 1982, Los Altos: Penisula
|
| [25] |
Gu F. R., Wu J.. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J Lightw Technol, 2005, 23: 740-748
|
| [26] |
Jiang J., Wu D., Fan P.. General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans Inform Theory, 2011, 7: 4488-4496
|
| [27] |
Ma S., Chang Y.. A new class of optimal optical orthogonal codes with weight five. IEEE Trans Inform Theory, 2004, 50: 1848-1850
|
| [28] |
Ma S., Chang Y.. Constructions of optimal optical orthogonal codes with weight five. J Combin Des, 2005, 13: 54-69
|
| [29] |
Massey J. L., Mathys P.. The collision channel without feedback. IEEE Trans Inform Theory, 1985, 31: 192-204
|
| [30] |
Mishima M., Fu H. L., Uruno S.. Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3. Des Codes Cryptogr, 2009, 52: 275-291
|
| [31] |
Momihara K.. Necessary and sufficient conditions for tight equi-difference conflict avoiding codes of weight three. Des Codes Cryptogr, 2007, 45: 379-390
|
| [32] |
Momihara K.. On cyclic 2(k − 1)-support (n, k)k−1 difference families. Finite Fields Appl, 2009, 15: 415-427
|
| [33] |
Momihara K.. Strong difference families, difference covers, and their applications for relative difference families. Des Codes Cryptogr, 2009, 51: 253-273
|
| [34] |
Momihara K.. New optimal optical orthogonal codes by restrictions to subgroups. Finite Fields Appl, 2011, 17: 166-182
|
| [35] |
Momihara K., Buratti M.. Bounds and constructions of optimal (n, 4, 2, 1) optical orthogonal codes. IEEE Trans Inform Theory, 2009, 55: 514-523
|
| [36] |
Momihara K., Müller M., Satoh J., Jimbo M.. Constant weight conflict-avoiding codes. SIAM J Discrete Math, 2007, 21: 959-979
|
| [37] |
Salehi J. A.. Code division multiple access techniques in optical fiber networks-Part I Fundamental principles. IEEE Trans Commun, 1989, 37: 824-833
|
| [38] |
Salehi J. A.. Emerging optical code-division multiple-access communications systems. IEEE Network, 1989, 3: 31-39
|
| [39] |
Salehi J. A., Brackett C. A.. Code division multiple access techniques in optical fiber networks-Part II Systems performance analysis. IEEE Trans Commun, 1989, 37: 834-842
|
| [40] |
Vecchi M. P., Salehi J. A.. Neuromorphic networks based on sparse optical orthogonal codes. Neural Information Processing Systems-Natural and Synthetic, 1988, New York: Amer Inst Phys 814 823
|
| [41] |
Wu D, Fan P, Li H, Parampalli U. Optimal variable-weight optical orthogonal codes via cyclic difference families. In: Proc 2009 IEEE International Symposium on Information Theory ISIT’09, June 28–July 3. 2009, 448–452
|
| [42] |
Wu D., Zhao H., Fan P., Shinohara S.. Optimal variable-weight optical orthogonal codes via difference packings. IEEE Trans Inform Theory, 2010, 56: 4053-4060
|
| [43] |
Yang G. C.. Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. GLOBECOM’ 93, IEEE, 1993, 1: 488-492
|
| [44] |
Yang G. C.. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans Commun, 1996, 44: 47-55
|
| [45] |
Yang G. C., Fuja T. E.. Optical orthogonal codes with unequal auto- and cross-correlation constraints. IEEE Trans Inform Theory, 1995, 41: 96-106
|
| [46] |
Yin J.. Some combinatorial constructions for optical orthogonal codes. Discrete Math, 1998, 185: 201-219
|
| [47] |
Zhao H., Wu D., Fan P.. Construction of optimal variable-weight optical orthogonal codes. J Combin Des, 2010, 18: 274-291
|