Optimization of risk policy and dividends with fixed transaction costs under interest rate
Xin ZHANG, Min SONG
Optimization of risk policy and dividends with fixed transaction costs under interest rate
In this paper, we consider the dividend optimization problem for a financial corporation with transaction costs. Besides the dividend control, the financial corporation takes proportional reinsurance to reduce risk and the surplus earns interest at the constant force ρ>0. Because of the presence of fixed transaction costs, the problem becomes a mixed classical-impulse stochastic control problem. We solve this problem explicitly and construct the value function together with the optimal policy.
Mixed classical-impulse control / impulse control / dividends / quasivariational inequality / transaction costs
[1] |
Abramowitz M, Stegun I A. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Washington: United States Department of Commerce, US Government Printing Office, 1972
|
[2] |
Asmussen S, Højgaard B, Taksar M. Optimal risk control and dividend distribution policies: Example of excess-of loss reinsurance for an insurance corporation. Finance Stoch, 2000, 4(3): 299-324
CrossRef
Google scholar
|
[3] |
Asmussen S, Taksar M. Controlled diffusion models for optimal dividend pay-out. Insurance Math Econom, 1997, 20(1): 1-15
CrossRef
Google scholar
|
[4] |
Bensoussan A, Lions J L. Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C R Acad Sci Paris Sér A-B, 1973, 276: 1189-1192
|
[5] |
Bensoussan A, Lions J L. Impulse Control and Quasivariational Inequalities. Montrouge: Gauthier-Villars, Montrouge, 1984
|
[6] |
Cadenillas A. Consumption-investment problems with transaction costs: survey and open problems. Math Methods Oper Res, 2000, 51(1): 43-68
CrossRef
Google scholar
|
[7] |
Cadenillas A, Choulli T, Taksar M, Zhang L. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm. Math Finance, 2006, 16(1): 181-202
CrossRef
Google scholar
|
[8] |
Cadenillas A, Zapatero F. Classical and impulse stochastic control of the exchange rate using interest rates and reserves. Math Finance, 2000, 10(2): 141-156
CrossRef
Google scholar
|
[9] |
Cai J, Gerber H U, Yang H. Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest. North Amer Actuar J, 2006, 10(2): 94-119
|
[10] |
Choulli T, Taksar M, Zhou X Y. Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction. Quant Finance, 2001, 1(6): 573-596
CrossRef
Google scholar
|
[11] |
Choulli T, Taksar M, Zhou X Y. A diffusion model for optimal dividend distribution for a company with constraints on risk control. SIAM J Control Optim, 2003, 41(6): 1946-1979
CrossRef
Google scholar
|
[12] |
Dixit A. A simplified treatment of the theory of optimal regulation of Brownian motion. J Econom Dynam Control, 1991, 15(4): 657-673
CrossRef
Google scholar
|
[13] |
Dumas B. Super contact and related optimality conditions. J Econom Dynam Control, 1991, 15(4): 675-685
CrossRef
Google scholar
|
[14] |
Harrison J, Sellke T, Taylor A. Impulse Control of Brownian Motion. Math Oper Res, 1983, 8(3): 454-466
CrossRef
Google scholar
|
[15] |
Højgaard B, Taksar M. Optimal proportional reinsurance policies for diffusion models. Scand Actuar J, 1998, 2: 166-180
|
[16] |
Højgaard B, Taksar M. Controlling risk exposure and dividends payout schemes: insurance company example. Math Finance, 1999, 9(2): 153-182
CrossRef
Google scholar
|
[17] |
Højgaard B, Taksar M. Optimal risk control for a large corporation in the presence of returns on investments. Finance Stoch, 2001, 5(4): 527-547
CrossRef
Google scholar
|
[18] |
Højgaard B, Taksar M. Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy. Quant Finance, 2004, 4(3): 315-327
CrossRef
Google scholar
|
[19] |
Jeanblanc-Picque M, Shiryaev A. Optimization of the flow of dividends. Russian Math Surveys, 1995, 50(2): 257-277
CrossRef
Google scholar
|
[20] |
Korn R. Optimal inpulse control when control actions have random consequences. Math Oper Res, 1997, 22(3): 639-667
CrossRef
Google scholar
|
[21] |
Korn R. Portfolio optimisation with strictly positive transaction costs and impulse control. Finance Stoch, 1998, 2(2): 85-114
CrossRef
Google scholar
|
[22] |
Richard S. Optimal impulse control of a diffusion process with both fixed and proportional costs of control. In: 1976 IEEE Conference on Decision and Control Including the 15th Symposium on Adaptive Processes. 1976, 759-763
|
[23] |
Taksar M. Optimal risk and dividend distribution control models for an insurance company. Math Methods Oper Res, 2000, 51(1): 1-42
CrossRef
Google scholar
|
[24] |
Yang R C, Liu K H, Xia B. Optimal impulse and regular control strategies for proportional reinsurance problem. J Appl Math Comput, 2005, 18(1-2): 145-158
CrossRef
Google scholar
|
/
〈 | 〉 |