Optimization of risk policy and dividends with fixed transaction costs under interest rate

Xin Zhang , Min Song

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 795 -811.

PDF (184KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 795 -811. DOI: 10.1007/s11464-012-0219-0
Research Article
RESEARCH ARTICLE

Optimization of risk policy and dividends with fixed transaction costs under interest rate

Author information +
History +
PDF (184KB)

Abstract

In this paper, we consider the dividend optimization problem for a financial corporation with transaction costs. Besides the dividend control, the financial corporation takes proportional reinsurance to reduce risk and the surplus earns interest at the constant force ρ > 0. Because of the presence of fixed transaction costs, the problem becomes a mixed classical-impulse stochastic control problem. We solve this problem explicitly and construct the value function together with the optimal policy.

Keywords

Mixed classical-impulse control / impulse control / dividends / quasi-variational inequality / transaction costs

Cite this article

Download citation ▾
Xin Zhang, Min Song. Optimization of risk policy and dividends with fixed transaction costs under interest rate. Front. Math. China, 2012, 7(4): 795-811 DOI:10.1007/s11464-012-0219-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramowitz M., Stegun I. A. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, 1972, Washington: United States Department of Commerce, US Government Printing Office

[2]

Asmussen S., Højgaard B., Taksar M. Optimal risk control and dividend distribution policies: Example of excess-of loss reinsurance for an insurance corporation. Finance Stoch, 2000, 4(3): 299-324

[3]

Asmussen S., Taksar M. Controlled diffusion models for optimal dividend pay-out. Insurance Math Econom, 1997, 20(1): 1-15

[4]

Bensoussan A., Lions J. L. Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C R Acad Sci Paris Sér A-B, 1973, 276: 1189-1192

[5]

Bensoussan A., Lions J. L. Impulse Control and Quasivariational Inequalities, 1984, Montrouge: Gauthier-Villars, Montrouge

[6]

Cadenillas A. Consumption-investment problems with transaction costs: survey and open problems. Math Methods Oper Res, 2000, 51(1): 43-68

[7]

Cadenillas A., Choulli T., Taksar M., Zhang L. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm. Math Finance, 2006, 16(1): 181-202

[8]

Cadenillas A., Zapatero F. Classical and impulse stochastic control of the exchange rate using interest rates and reserves. Math Finance, 2000, 10(2): 141-156

[9]

Cai J., Gerber H. U., Yang H. Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest. North Amer Actuar J, 2006, 10(2): 94-119

[10]

Choulli T., Taksar M., Zhou X. Y. Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction. Quant Finance, 2001, 1(6): 573-596

[11]

Choulli T., Taksar M., Zhou X. Y. A diffusion model for optimal dividend distribution for a company with constraints on risk control. SIAM J Control Optim, 2003, 41(6): 1946-1979

[12]

Dixit A. A simplified treatment of the theory of optimal regulation of Brownian motion. J Econom Dynam Control, 1991, 15(4): 657-673

[13]

Dumas B. Super contact and related optimality conditions. J Econom Dynam Control, 1991, 15(4): 675-685

[14]

Harrison J., Sellke T., Taylor A. Impulse Control of Brownian Motion. Math Oper Res, 1983, 8(3): 454-466

[15]

Højgaard B., Taksar M. Optimal proportional reinsurance policies for diffusion models. Scand Actuar J, 1998, 2: 166-180

[16]

Højgaard B., Taksar M. Controlling risk exposure and dividends payout schemes: insurance company example. Math Finance, 1999, 9(2): 153-182

[17]

Højgaard B., Taksar M. Optimal risk control for a large corporation in the presence of returns on investments. Finance Stoch, 2001, 5(4): 527-547

[18]

Højgaard B., Taksar M. Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy. Quant Finance, 2004, 4(3): 315-327

[19]

Jeanblanc-Picque M., Shiryaev A. Optimization of the flow of dividends. Russian Math Surveys, 1995, 50(2): 257-277

[20]

Korn R. Optimal inpulse control when control actions have random consequences. Math Oper Res, 1997, 22(3): 639-667

[21]

Korn R. Portfolio optimisation with strictly positive transaction costs and impulse control. Finance Stoch, 1998, 2(2): 85-114

[22]

Richard S. Optimal impulse control of a diffusion process with both fixed and proportional costs of control. In: 1976 IEEE Conference on Decision and Control Including the 15th Symposium on Adaptive Processes. 1976, 759–763

[23]

Taksar M. Optimal risk and dividend distribution control models for an insurance company. Math Methods Oper Res, 2000, 51(1): 1-42

[24]

Yang R. C., Liu K. H., Xia B. Optimal impulse and regular control strategies for proportional reinsurance problem. J Appl Math Comput, 2005, 18(1–2): 145-158

AI Summary AI Mindmap
PDF (184KB)

955

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/