Optimization of risk policy and dividends with fixed transaction costs under interest rate

Xin ZHANG, Min SONG

PDF(184 KB)
PDF(184 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 795-811. DOI: 10.1007/s11464-012-0219-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimization of risk policy and dividends with fixed transaction costs under interest rate

Author information +
History +

Abstract

In this paper, we consider the dividend optimization problem for a financial corporation with transaction costs. Besides the dividend control, the financial corporation takes proportional reinsurance to reduce risk and the surplus earns interest at the constant force ρ>0. Because of the presence of fixed transaction costs, the problem becomes a mixed classical-impulse stochastic control problem. We solve this problem explicitly and construct the value function together with the optimal policy.

Keywords

Mixed classical-impulse control / impulse control / dividends / quasivariational inequality / transaction costs

Cite this article

Download citation ▾
Xin ZHANG, Min SONG. Optimization of risk policy and dividends with fixed transaction costs under interest rate. Front Math Chin, 2012, 7(4): 795‒811 https://doi.org/10.1007/s11464-012-0219-0

References

[1]
Abramowitz M, Stegun I A. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Washington: United States Department of Commerce, US Government Printing Office, 1972
[2]
Asmussen S, Højgaard B, Taksar M. Optimal risk control and dividend distribution policies: Example of excess-of loss reinsurance for an insurance corporation. Finance Stoch, 2000, 4(3): 299-324
CrossRef Google scholar
[3]
Asmussen S, Taksar M. Controlled diffusion models for optimal dividend pay-out. Insurance Math Econom, 1997, 20(1): 1-15
CrossRef Google scholar
[4]
Bensoussan A, Lions J L. Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C R Acad Sci Paris Sér A-B, 1973, 276: 1189-1192
[5]
Bensoussan A, Lions J L. Impulse Control and Quasivariational Inequalities. Montrouge: Gauthier-Villars, Montrouge, 1984
[6]
Cadenillas A. Consumption-investment problems with transaction costs: survey and open problems. Math Methods Oper Res, 2000, 51(1): 43-68
CrossRef Google scholar
[7]
Cadenillas A, Choulli T, Taksar M, Zhang L. Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm. Math Finance, 2006, 16(1): 181-202
CrossRef Google scholar
[8]
Cadenillas A, Zapatero F. Classical and impulse stochastic control of the exchange rate using interest rates and reserves. Math Finance, 2000, 10(2): 141-156
CrossRef Google scholar
[9]
Cai J, Gerber H U, Yang H. Optimal dividends in an Ornstein-Uhlenbeck type model with credit and debit interest. North Amer Actuar J, 2006, 10(2): 94-119
[10]
Choulli T, Taksar M, Zhou X Y. Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction. Quant Finance, 2001, 1(6): 573-596
CrossRef Google scholar
[11]
Choulli T, Taksar M, Zhou X Y. A diffusion model for optimal dividend distribution for a company with constraints on risk control. SIAM J Control Optim, 2003, 41(6): 1946-1979
CrossRef Google scholar
[12]
Dixit A. A simplified treatment of the theory of optimal regulation of Brownian motion. J Econom Dynam Control, 1991, 15(4): 657-673
CrossRef Google scholar
[13]
Dumas B. Super contact and related optimality conditions. J Econom Dynam Control, 1991, 15(4): 675-685
CrossRef Google scholar
[14]
Harrison J, Sellke T, Taylor A. Impulse Control of Brownian Motion. Math Oper Res, 1983, 8(3): 454-466
CrossRef Google scholar
[15]
Højgaard B, Taksar M. Optimal proportional reinsurance policies for diffusion models. Scand Actuar J, 1998, 2: 166-180
[16]
Højgaard B, Taksar M. Controlling risk exposure and dividends payout schemes: insurance company example. Math Finance, 1999, 9(2): 153-182
CrossRef Google scholar
[17]
Højgaard B, Taksar M. Optimal risk control for a large corporation in the presence of returns on investments. Finance Stoch, 2001, 5(4): 527-547
CrossRef Google scholar
[18]
Højgaard B, Taksar M. Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy. Quant Finance, 2004, 4(3): 315-327
CrossRef Google scholar
[19]
Jeanblanc-Picque M, Shiryaev A. Optimization of the flow of dividends. Russian Math Surveys, 1995, 50(2): 257-277
CrossRef Google scholar
[20]
Korn R. Optimal inpulse control when control actions have random consequences. Math Oper Res, 1997, 22(3): 639-667
CrossRef Google scholar
[21]
Korn R. Portfolio optimisation with strictly positive transaction costs and impulse control. Finance Stoch, 1998, 2(2): 85-114
CrossRef Google scholar
[22]
Richard S. Optimal impulse control of a diffusion process with both fixed and proportional costs of control. In: 1976 IEEE Conference on Decision and Control Including the 15th Symposium on Adaptive Processes. 1976, 759-763
[23]
Taksar M. Optimal risk and dividend distribution control models for an insurance company. Math Methods Oper Res, 2000, 51(1): 1-42
CrossRef Google scholar
[24]
Yang R C, Liu K H, Xia B. Optimal impulse and regular control strategies for proportional reinsurance problem. J Appl Math Comput, 2005, 18(1-2): 145-158
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(184 KB)

Accesses

Citations

Detail

Sections
Recommended

/