Finite 2-groups whose nonnormal subgroups have orders at most 23

Qinhai Zhang , Meijuan Su

Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 971 -1003.

PDF (264KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 971 -1003. DOI: 10.1007/s11464-012-0216-3
Research Article
RESEARCH ARTICLE

Finite 2-groups whose nonnormal subgroups have orders at most 23

Author information +
History +
PDF (264KB)

Abstract

In this paper, we classify finite 2-groups all of whose nonnormal subgroups have orders at most 23. Together with a known result, we completely solved Problem 2279 proposed by Y. Berkovich and Z. Janko in Groups of Prime Power Order, Vol. 3.

Keywords

Minimal non-abelian p-group / nonnormal subgroup / central extension

Cite this article

Download citation ▾
Qinhai Zhang, Meijuan Su. Finite 2-groups whose nonnormal subgroups have orders at most 23. Front. Math. China, 2012, 7(5): 971-1003 DOI:10.1007/s11464-012-0216-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berkovich Y. Groups of Prime Power Order, Vol. 1, 2008, Berlin, New York: Walter de Gruyter

[2]

Berkovich Y., Janko Z. Groups of Prime Power Order, Vol. 2, 2008, Berlin, New York: Walter de Gruyter

[3]

Berkovich Y., Janko Z. Groups of Prime Power Order, Vol. 3, 2011, Berlin, New York: Walter de Gruyter

[4]

Huppert B. Endliche Gruppen I, 1967, Berlin, Heidelberg, New York: Springer-Verlag

[5]

Passman D. S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352-370

[6]

Zhang G. H., Guo X. Q., Qu H. P., Xu M. Y. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165-1178

[7]

Zhang Q H, Li X X, Su M J. Finite p-groups whose nonnormal subgroups have orders ⩾ p3 (in preparation)

[8]

Zhang Q. H., Sun X. J., An L. J., Xu M. Y. Finite p-groups all of whose subgroups of index p2 are abelian. Algebra Colloq, 2008, 15(1): 167-180

AI Summary AI Mindmap
PDF (264KB)

907

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/