Finite 2-groups whose nonnormal subgroups have orders at most 23

Qinhai ZHANG, Meijuan SU

PDF(264 KB)
PDF(264 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 971-1003. DOI: 10.1007/s11464-012-0216-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Finite 2-groups whose nonnormal subgroups have orders at most 23

Author information +
History +

Abstract

In this paper, we classify finite 2-groups all of whose nonnormal subgroups have orders at most 23. Together with a known result, we completely solved Problem 2279 proposed by Y. Berkovich and Z. Janko in Groups of Prime Power Order, Vol. 3.

Keywords

Minimal non-abelian p-group / nonnormal subgroup / central extension

Cite this article

Download citation ▾
Qinhai ZHANG, Meijuan SU. Finite 2-groups whose nonnormal subgroups have orders at most 23. Front Math Chin, 2012, 7(5): 971‒1003 https://doi.org/10.1007/s11464-012-0216-3

References

[1]
Berkovich Y. Groups of Prime Power Order, Vol. 1. Berlin, New York: Walter de Gruyter, 2008
[2]
Berkovich Y, Janko Z. Groups of Prime Power Order, Vol. 2. Berlin, New York: Walter de Gruyter, 2008
[3]
Berkovich Y, Janko Z. Groups of Prime Power Order, Vol. 3. Berlin, New York: Walter de Gruyter, 2011
[4]
Huppert B. Endliche Gruppen I. Berlin, Heidelberg, New York: Springer-Verlag, 1967
CrossRef Google scholar
[5]
Passman D S. Nonnormal subgroups of p-groups. J Algebra, 1970, 15: 352-370
CrossRef Google scholar
[6]
Zhang G H, Guo X Q, Qu H P, Xu M Y. Finite group which have many normal subgroups. J Korean Math Soc, 2009, 46(6): 1165-1178
CrossRef Google scholar
[7]
Zhang Q H, Li X X, Su M J. Finite p-groups whose nonnormal subgroups have orders≤p3 (in preparation)
[8]
Zhang Q H, Sun X J, An L J, Xu M Y. Finite p-groups all of whose subgroups of index p2 are abelian. Algebra Colloq, 2008, 15(1): 167-180

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(264 KB)

Accesses

Citations

Detail

Sections
Recommended

/