Hochschild cohomology of
Bo HOU, Jinmei FAN
Hochschild cohomology of
We consider the -Galois covering of the algebra A introduced by F. Xu [Adv. Math., 2008, 219: 1872-1893]. We calculate the dimensions of all Hochschild cohomology groups of and give the ring structure of the Hochschild cohomology ring modulo nilpotence. As a conclusion, we provide a class of counterexamples to Snashall-Solberg’s conjecture.
Hochschild cohomology / Galois covering / Koszul algebra
[1] |
Buchweitz R O, Green E L, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12: 805-816
|
[2] |
Buchweitz R O, Green E L, Snashall N, Solberg Ø. Multiplicative structures for Koszul algebras. Q J Math, 2008, 59: 441-454
CrossRef
Google scholar
|
[3] |
Cibils C, Marcos E N. Skew category, Galois covering and smash product of a category over a ring. Proc Amer Math Soc, 2006, 134: 39-50
CrossRef
Google scholar
|
[4] |
Cibils C, Redondo M J. Cartan-Leray spectral sequence for Galois coverings of categories. J Algebra, 2005, 284: 310-325
CrossRef
Google scholar
|
[5] |
Evens L. The cohomology ring of a finite group, Trans Amer Math Soc, 1961, 101: 224-239
CrossRef
Google scholar
|
[6] |
Gabriel P. The universal cover of a representation-finite algebra. In: Representations of Algebras. Lecture Notes in Math, Vol 903. Berlin: Springer, 1981, 68-105
|
[7] |
Gerstenhaber M. The cohomology structure of an associative ring. Ann Math, 1963, 78(2): 267-288
CrossRef
Google scholar
|
[8] |
Green E L. Noncommutative Gröbner bases, and projective resolutions. In: Dräxler P, Michler G, Ringel C M, eds. Computational Methods for Representations of Groups and Algebras. Progress in Mathematics, Vol 173. Boston: Birkhäuser, 1999, 29-60
CrossRef
Google scholar
|
[9] |
Green E L, Hartman G, Marcos E N, Solberg Ø. Resolutions over Koszul algebras. Arch Math, 2005, 85: 118-127
CrossRef
Google scholar
|
[10] |
Green E L, Huang R Q. Projective resolution of straightening closed algebras generated by minors. Adv Math, 1995, 110: 314-333
CrossRef
Google scholar
|
[11] |
Green E L, Snashall N. The Hochschild cohomology ring modulo nipotence of a stacked monomial algebra. Colloq Math, 2006, 105: 233-258
CrossRef
Google scholar
|
[12] |
Green E L, Snashall N, Solberg Ø. The Hochschild cohomology ring of a selfinjective algebra of a finite representation type. Proc Amer Math Soc, 2003, 131: 3387-3393
CrossRef
Google scholar
|
[13] |
Green E L, Snashall N, Solberg Ø. The Hochschild cohomology ring modulo nilpotence of a monomial algebra. J Algebra Appl, 2006, 5: 153-192
CrossRef
Google scholar
|
[14] |
Happel D. Hochschild cohomology of finite-dimensional algebras. In: Malliavin M-P, ed. Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin Proceedings, Paris 1987-1988 (39ème Année). Lecture Notes in Math, Vol 1404. Berlin: Springer, 1989, 108-126
|
[15] |
Hou B, Yang S. Hochschild cohomology of
|
[16] |
MacLane S. Homology. Berlin: Springer-Verlag, 1963
CrossRef
Google scholar
|
[17] |
Martins Ma I R, de la Peña J A. Comparing the simplicial and the Hochschild cohomologies of a finite-dimensional algebra. J Pure Appl Algebra, 1999, 138(1): 45-58
CrossRef
Google scholar
|
[18] |
Snashall N. Support varieties and the Hochschild cohomology ring modulo nilpotence. arxiv: math RT 0811.4506v2
|
[19] |
Snashall N, Solberg Ø. Support varieties and Hochschild cohomology rings. Proc Lond Math Soc, 2004, 88: 705-732
CrossRef
Google scholar
|
[20] |
Snashall N, Taillefer R. Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras. Colloq Math, 2010, 119: 79-93
CrossRef
Google scholar
|
[21] |
Xu F. Hochschild and ordinary cohomology rings of small categories. Adv Math, 2008, 219: 1872-1893
CrossRef
Google scholar
|
[22] |
Xu Y, Zhang C. More counterexamples to Happel’s question and Snashall-Solberg’s conjecture. arxiv: math RT 1109.3956v1
|
[23] |
Zhao D, Han Y. Koszul algebras and finite Galois covering. Science China Ser A, 2009, 52(10): 2145-2153
CrossRef
Google scholar
|
/
〈 | 〉 |