Hochschild cohomology of ℤn-Galois coverings of an algebra

Bo Hou, Jinmei Fan

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1113-1128.

PDF(149 KB)
PDF(149 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1113-1128. DOI: 10.1007/s11464-012-0215-4
Research Article
RESEARCH ARTICLE

Hochschild cohomology of ℤn-Galois coverings of an algebra

Author information +
History +

Abstract

We consider the ℤn-Galois covering Λn of the algebra A introduced by F. Xu [Adv. Math., 2008, 219: 1872–1893]. We calculate the dimensions of all Hochschild cohomology groups of Λn and give the ring structure of the Hochschild cohomology ring modulo nilpotence. As a conclusion, we provide a class of counterexamples to Snashall-Solberg’s conjecture.

Keywords

Hochschild cohomology / Galois covering / Koszul algebra

Cite this article

Download citation ▾
Bo Hou, Jinmei Fan. Hochschild cohomology of ℤn-Galois coverings of an algebra. Front. Math. China, 2012, 7(6): 1113‒1128 https://doi.org/10.1007/s11464-012-0215-4

References

[1.]
Buchweitz R. O., Green E. L., Madsen D., Solberg Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12: 805-816
[2.]
Buchweitz R. O., Green E. L., Snashall N., Solberg Multiplicative structures for Koszul algebras. Q J Math, 2008, 59: 441-454
CrossRef Google scholar
[3.]
Cibils C., Marcos E. N. Skew category, Galois covering and smash product of a category over a ring. Proc Amer Math Soc, 2006, 134: 39-50
CrossRef Google scholar
[4.]
Cibils C., Redondo M. J. Cartan-Leray spectral sequence for Galois coverings of categories. J Algebra, 2005, 284: 310-325
CrossRef Google scholar
[5.]
Evens L. The cohomology ring of a finite group. Trans Amer Math Soc, 1961, 101: 224-239
CrossRef Google scholar
[6.]
Gabriel P. The universal cover of a representation-finite algebra. Representations of Algebras, 1981, Berlin: Springer, 68-105
CrossRef Google scholar
[7.]
Gerstenhaber M. The cohomology structure of an associative ring. Ann Math, 1963, 78(2): 267-288
CrossRef Google scholar
[8.]
Green E. L. Dräxler P., Michler G., Ringel C. M. Noncommutative Gröbner bases, and projective resolutions. Computational Methods for Representations of Groups and Algebras. Progress in Mathematics, Vol 173, 1999, Boston: Birkhäuser, 29-60
CrossRef Google scholar
[9.]
Green E. L., Hartman G., Marcos E. N., Solberg Resolutions over Koszul algebras. Arch Math, 2005, 85: 118-127
CrossRef Google scholar
[10.]
Green E. L., Huang R. Q. Projective resolution of straightening closed algebras generated by minors. Adv Math, 1995, 110: 314-333
CrossRef Google scholar
[11.]
Green E. L., Snashall N. The Hochschild cohomology ring modulo nipotence of a stacked monomial algebra. Colloq Math, 2006, 105: 233-258
CrossRef Google scholar
[12.]
Green E. L., Snashall N., Solberg The Hochschild cohomology ring of a selfinjective algebra of a finite representation type. Proc Amer Math Soc, 2003, 131: 3387-3393
CrossRef Google scholar
[13.]
Green E. L., Snashall N., Solberg The Hochschild cohomology ring modulo nilpotence of a monomial algebra. J Algebra Appl, 2006, 5: 153-192
CrossRef Google scholar
[14.]
Happel D. Malliavin M. -P. Hochschild cohomology of finite-dimensional algebras. Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin Proceedings, Paris 1987–1988 (39ème Annèe), 1989, Berlin: Springer, 108-126
CrossRef Google scholar
[15.]
Hou B, Yang S. Hochschild cohomology of ℤ2-Galois coverings of a class of quantum Koszul algebra. Preprint
[16.]
MacLane S. Homology, 1963, Berlin: Springer-Verlag
CrossRef Google scholar
[17.]
Martins Ma I. R., de la Peña J. A. Comparing the simplicial and the Hochschild cohomologies of a finite-dimensional algebra. J Pure Appl Algebra, 1999, 138(1): 45-58
CrossRef Google scholar
[18.]
Snashall N. Support varieties and the Hochschild cohomology ring modulo nilpotence. arxiv: math RT 0811.4506v2
[19.]
Snashall N., Solberg Support varieties and Hochschild cohomology rings. Proc Lond Math Soc, 2004, 88: 705-732
CrossRef Google scholar
[20.]
Snashall N., Taillefer R. Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras. Colloq Math, 2010, 119: 79-93
CrossRef Google scholar
[21.]
Xu F. Hochschild and ordinary cohomology rings of small categories. Adv Math, 2008, 219: 1872-1893
CrossRef Google scholar
[22.]
Xu Y, Zhang C. More counterexamples to Happel’s question and Snashall-Solberg’s conjecture. arxiv: math RT 1109.3956v1
[23.]
Zhao D., Han Y. Koszul algebras and finite Galois covering. Science China Ser A, 2009, 52(10): 2145-2153
CrossRef Google scholar
AI Summary AI Mindmap
PDF(149 KB)

Accesses

Citations

Detail

Sections
Recommended

/