Hochschild cohomology of ?n-Galois coverings of an algebra

Bo HOU, Jinmei FAN

PDF(149 KB)
PDF(149 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1113-1128. DOI: 10.1007/s11464-012-0215-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Hochschild cohomology of ?n-Galois coverings of an algebra

Author information +
History +

Abstract

We consider the n-Galois covering Λn of the algebra A introduced by F. Xu [Adv. Math., 2008, 219: 1872-1893]. We calculate the dimensions of all Hochschild cohomology groups of Λn and give the ring structure of the Hochschild cohomology ring modulo nilpotence. As a conclusion, we provide a class of counterexamples to Snashall-Solberg’s conjecture.

Keywords

Hochschild cohomology / Galois covering / Koszul algebra

Cite this article

Download citation ▾
Bo HOU, Jinmei FAN. Hochschild cohomology of n-Galois coverings of an algebra. Front Math Chin, 2012, 7(6): 1113‒1128 https://doi.org/10.1007/s11464-012-0215-4

References

[1]
Buchweitz R O, Green E L, Madsen D, Solberg Ø. Finite Hochschild cohomology without finite global dimension. Math Res Lett, 2005, 12: 805-816
[2]
Buchweitz R O, Green E L, Snashall N, Solberg Ø. Multiplicative structures for Koszul algebras. Q J Math, 2008, 59: 441-454
CrossRef Google scholar
[3]
Cibils C, Marcos E N. Skew category, Galois covering and smash product of a category over a ring. Proc Amer Math Soc, 2006, 134: 39-50
CrossRef Google scholar
[4]
Cibils C, Redondo M J. Cartan-Leray spectral sequence for Galois coverings of categories. J Algebra, 2005, 284: 310-325
CrossRef Google scholar
[5]
Evens L. The cohomology ring of a finite group, Trans Amer Math Soc, 1961, 101: 224-239
CrossRef Google scholar
[6]
Gabriel P. The universal cover of a representation-finite algebra. In: Representations of Algebras. Lecture Notes in Math, Vol 903. Berlin: Springer, 1981, 68-105
[7]
Gerstenhaber M. The cohomology structure of an associative ring. Ann Math, 1963, 78(2): 267-288
CrossRef Google scholar
[8]
Green E L. Noncommutative Gröbner bases, and projective resolutions. In: Dräxler P, Michler G, Ringel C M, eds. Computational Methods for Representations of Groups and Algebras. Progress in Mathematics, Vol 173. Boston: Birkhäuser, 1999, 29-60
CrossRef Google scholar
[9]
Green E L, Hartman G, Marcos E N, Solberg Ø. Resolutions over Koszul algebras. Arch Math, 2005, 85: 118-127
CrossRef Google scholar
[10]
Green E L, Huang R Q. Projective resolution of straightening closed algebras generated by minors. Adv Math, 1995, 110: 314-333
CrossRef Google scholar
[11]
Green E L, Snashall N. The Hochschild cohomology ring modulo nipotence of a stacked monomial algebra. Colloq Math, 2006, 105: 233-258
CrossRef Google scholar
[12]
Green E L, Snashall N, Solberg Ø. The Hochschild cohomology ring of a selfinjective algebra of a finite representation type. Proc Amer Math Soc, 2003, 131: 3387-3393
CrossRef Google scholar
[13]
Green E L, Snashall N, Solberg Ø. The Hochschild cohomology ring modulo nilpotence of a monomial algebra. J Algebra Appl, 2006, 5: 153-192
CrossRef Google scholar
[14]
Happel D. Hochschild cohomology of finite-dimensional algebras. In: Malliavin M-P, ed. Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin Proceedings, Paris 1987-1988 (39ème Année). Lecture Notes in Math, Vol 1404. Berlin: Springer, 1989, 108-126
[15]
Hou B, Yang S. Hochschild cohomology of ℤ2-Galois coverings of a class of quantum Koszul algebra. Preprint
[16]
MacLane S. Homology. Berlin: Springer-Verlag, 1963
CrossRef Google scholar
[17]
Martins Ma I R, de la Peña J A. Comparing the simplicial and the Hochschild cohomologies of a finite-dimensional algebra. J Pure Appl Algebra, 1999, 138(1): 45-58
CrossRef Google scholar
[18]
Snashall N. Support varieties and the Hochschild cohomology ring modulo nilpotence. arxiv: math RT 0811.4506v2
[19]
Snashall N, Solberg Ø. Support varieties and Hochschild cohomology rings. Proc Lond Math Soc, 2004, 88: 705-732
CrossRef Google scholar
[20]
Snashall N, Taillefer R. Hochschild cohomology of socle deformations of a class of Koszul self-injective algebras. Colloq Math, 2010, 119: 79-93
CrossRef Google scholar
[21]
Xu F. Hochschild and ordinary cohomology rings of small categories. Adv Math, 2008, 219: 1872-1893
CrossRef Google scholar
[22]
Xu Y, Zhang C. More counterexamples to Happel’s question and Snashall-Solberg’s conjecture. arxiv: math RT 1109.3956v1
[23]
Zhao D, Han Y. Koszul algebras and finite Galois covering. Science China Ser A, 2009, 52(10): 2145-2153
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(149 KB)

Accesses

Citations

Detail

Sections
Recommended

/