
Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten
Haiyan Guan, Delu Tian, Shenglin Zhou
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1095-1112.
Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten
This paper is a further contribution to the classification of linetransitive finite linear spaces. We prove that if ℐ is a non-trivial finite linear space such that the Fang-Li parameter gcd(k, r) is 9 or 10, and the group G ⩽ Aut(ℐ) is line-transitive and point-imprimitive, then ℐ is the Desarguesian projective plane PG(2, 9).
Linear space / line-transitive / point-imprimitive
[1.] |
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Linear spaces with a line-transitive point-imprimitive automorphism group and Fang-Li parameter gcd(k, r) at most eight. http://arxiv.org/abs/math.CO/0701629
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
Camina A R, Mishcke S. Line-transitive automorphism groups of linear spaces. Electron J Comb, 1996, 3(1): Research Paper 3 (electronic)
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
Cresp G. Searching for line-transitive, point-imprimitive linear spaces. Honours Dissertation, UWA, Perth, 2001. http://arxiv.org/abs/math.CO/0604532
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
Guan H Y, Tian D L, Zhou S L. Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most 10. http://arxiv.org/abs/1112.3432v1
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4; 2005. http://www.gap-system.org
|
[23.] |
|
/
〈 |
|
〉 |