![](/develop/static/imgs/pdf.png)
Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(
Haiyan GUAN, Delu TIAN, Shenglin ZHOU
Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(
This paper is a further contribution to the classification of linetransitive finite linear spaces. We prove that if is a non-trivial finite linear space such that the Fang-Li parameter gcd(k, r) is 9 or 10, and the group G≤Aut() is line-transitive and point-imprimitive, then is the Desarguesian projective plane PG(2, 9).
Linear space / line-transitive / point-imprimitive
[1] |
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Linear spaces with a line-transitive point-imprimitive automorphism group and Fang-Li parameter gcd(k, r) at most eight. http://arxiv.org/abs/math.CO/0701629
|
[2] |
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Finite line-transitive linear spaces: theory and search strategies. Acta Math Sin (Engl Ser), 2009, 25(9): 1399-1436
|
[3] |
Block A R. On the orbits of collineation groups. Math Z, 1967, 96: 33-49
|
[4] |
Cameron P J. Finite permutation groups and finite simple groups. Bull Lond Math Soc, 1981, 13(1): 1-22
|
[5] |
Camina A R, Mishcke S. Line-transitive automorphism groups of linear spaces. Electron J Comb, 1996, 3(1): Research Paper 3 (electronic)
|
[6] |
Camina A R, Praeger C E. Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple. Aequationes Math, 2001, 61(3): 221-232
|
[7] |
Camina A R, Siemons J. Block transitive automorphism groups of 2-(v, k, 1) block designs. J Combin Theory Ser A, 1989, 51(2): 268-276
|
[8] |
Coutts H J, Quick M, Roney-Dougal C M. The primitive permutation groups of degree less than 4096. Comm Algebra, 2011, 39(10): 3526-3546
|
[9] |
Cresp G. Searching for line-transitive, point-imprimitive linear spaces. Honours Dissertation, UWA, Perth, 2001. http://arxiv.org/abs/math.CO/0604532
|
[10] |
Delandtsheer A. Line-primitive automorphism groups of finite linear spaces. European J Comb, 1989, 10(2): 161-169
|
[11] |
Delandtsheer A, Doyen J. Most block-transitive t-designs are point-primitive. Geom Dedicata, 1989, 29(3): 307-310
|
[12] |
Delandtsheer A, Niemeyer A C, Praeger C E. Finite line-transitive linear spaces: parameters and normal point-partitions. Adv Geom, 2003, 3(4): 469-485
|
[13] |
Dixon J D, Mortimer B. Permutation Groups. Graduate Texts in Mathematics, Vol 163. New York: Springer-Verlag, 1996
|
[14] |
Fang W D, Li H L. A generalization of the Camina-Gagen theorem. J Math (Wuhan), 1993, 13(4): 437-442 (in Chinese)
|
[15] |
Guan H Y, Tian D L, Zhou S L. Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most 10. http://arxiv.org/abs/1112.3432v1
|
[16] |
Kleidman P, Liebeck M. The Subgroup Structure of the Finite Classical Groups. London Mathematical Society Lecture Notes Series, Vol 129. Cambridge: Cambridge University Press, 1990
|
[17] |
Li H L, Liu W J. Line-primitive 2-(ν, k, 1) designs with k/(k, ν)≤10. J Combin Theory Ser A, 2001, 93: 153-167
|
[18] |
Liebeck M W, Saxl J. Primitive permutation groups containing an element of large prime order. J Lond Math Soc (2), 1985, 31(2): 237-249
|
[19] |
Praeger C E, Tuan N D. Inequalities involving the Delandtsheer-Doyen parameters for finite line-transitive linear spaces. J Combin Theory Ser A, 2003, 102(1): 38-62
|
[20] |
Praeger C E, Zhou S L. Classification of line-transitive point-imprimitive linear spaces with line size at most 12. Des Codes Cryptogr, 2008, 47: 99-111
|
[21] |
Roney-Dougal C M. The primitive permutation groups of degree less than 2500. J Algebra, 2000, 292: 154-183
|
[22] |
The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4; 2005. http://www.gap-system.org
|
[23] |
Wielandt H. Finite Permutation Groups. New York: Academic Press, 1964
|
/
〈 |
|
〉 |