Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten

Haiyan Guan, Delu Tian, Shenglin Zhou

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1095-1112.

PDF(176 KB)
PDF(176 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1095-1112. DOI: 10.1007/s11464-012-0214-5
Research Article
RESEARCH ARTICLE

Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten

Author information +
History +

Abstract

This paper is a further contribution to the classification of linetransitive finite linear spaces. We prove that if ℐ is a non-trivial finite linear space such that the Fang-Li parameter gcd(k, r) is 9 or 10, and the group G ⩽ Aut(ℐ) is line-transitive and point-imprimitive, then ℐ is the Desarguesian projective plane PG(2, 9).

Keywords

Linear space / line-transitive / point-imprimitive

Cite this article

Download citation ▾
Haiyan Guan, Delu Tian, Shenglin Zhou. Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten. Front. Math. China, 2012, 7(6): 1095‒1112 https://doi.org/10.1007/s11464-012-0214-5

References

[1.]
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Linear spaces with a line-transitive point-imprimitive automorphism group and Fang-Li parameter gcd(k, r) at most eight. http://arxiv.org/abs/math.CO/0701629
[2.]
Betten A., Delandtsheer A., Law M., Niemeyer A. C., Praeger C. E., Zhou S. L. Finite line-transitive linear spaces: theory and search strategies. Acta Math Sin (Engl Ser), 2009, 25(9): 1399-1436
CrossRef Google scholar
[3.]
Block A. R. On the orbits of collineation groups. Math Z, 1967, 96: 33-49
CrossRef Google scholar
[4.]
Cameron P. J. Finite permutation groups and finite simple groups. Bull Lond Math Soc, 1981, 13(1): 1-22
CrossRef Google scholar
[5.]
Camina A R, Mishcke S. Line-transitive automorphism groups of linear spaces. Electron J Comb, 1996, 3(1): Research Paper 3 (electronic)
[6.]
Camina A. R., Praeger C. E. Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple. Aequationes Math, 2001, 61(3): 221-232
CrossRef Google scholar
[7.]
Camina A. R., Siemons J. Block transitive automorphism groups of 2-(v, k, 1) block designs. J Combin Theory Ser A, 1989, 51(2): 268-276
CrossRef Google scholar
[8.]
Coutts H. J., Quick M., Roney-Dougal C. M. The primitive permutation groups of degree less than 4096. Comm Algebra, 2011, 39(10): 3526-3546
CrossRef Google scholar
[9.]
Cresp G. Searching for line-transitive, point-imprimitive linear spaces. Honours Dissertation, UWA, Perth, 2001. http://arxiv.org/abs/math.CO/0604532
[10.]
Delandtsheer A. Line-primitive automorphism groups of finite linear spaces. European J Comb, 1989, 10(2): 161-169
[11.]
Delandtsheer A., Doyen J. Most block-transitive t-designs are point-primitive. Geom Dedicata, 1989, 29(3): 307-310
CrossRef Google scholar
[12.]
Delandtsheer A., Niemeyer A. C., Praeger C. E. Finite line-transitive linear spaces: parameters and normal point-partitions. Adv Geom, 2003, 3(4): 469-485
CrossRef Google scholar
[13.]
Dixon J. D., Mortimer B. Permutation Groups, 1996, New York: Springer-Verlag
CrossRef Google scholar
[14.]
Fang W. D., Li H. L. A generalization of the Camina-Gagen theorem. J Math (Wuhan), 1993, 13(4): 437-442
[15.]
Guan H Y, Tian D L, Zhou S L. Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most 10. http://arxiv.org/abs/1112.3432v1
[16.]
Kleidman P., Liebeck M. The Subgroup Structure of the Finite Classical Groups, 1990, Cambridge: Cambridge University Press
CrossRef Google scholar
[17.]
Li H. L., Liu W. J. Line-primitive 2-(v, k, 1) designs with k/(k, v) ⩽ 10. J Combin Theory Ser A, 2001, 93: 153-167
CrossRef Google scholar
[18.]
Liebeck M. W., Saxl J. Primitive permutation groups containing an element of large prime order. J Lond Math Soc (2), 1985, 31(2): 237-249
CrossRef Google scholar
[19.]
Praeger C. E., Tuan N. D. Inequalities involving the Delandtsheer-Doyen parameters for finite line-transitive linear spaces. J Combin Theory Ser A, 2003, 102(1): 38-62
CrossRef Google scholar
[20.]
Praeger C. E., Zhou S. L. Classification of line-transitive point-imprimitive linear spaces with line size at most 12. Des Codes Cryptogr, 2008, 47: 99-111
CrossRef Google scholar
[21.]
Roney-Dougal C. M. The primitive permutation groups of degree less than 2500. J Algebra, 2000, 292: 154-183
CrossRef Google scholar
[22.]
The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4; 2005. http://www.gap-system.org
[23.]
Wielandt H. Finite Permutation Groups, 1964, New York: Academic Press
AI Summary AI Mindmap
PDF(176 KB)

Accesses

Citations

Detail

Sections
Recommended

/