Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten
Haiyan Guan , Delu Tian , Shenglin Zhou
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1095 -1112.
Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most ten
This paper is a further contribution to the classification of linetransitive finite linear spaces. We prove that if ℐ is a non-trivial finite linear space such that the Fang-Li parameter gcd(k, r) is 9 or 10, and the group G ⩽ Aut(ℐ) is line-transitive and point-imprimitive, then ℐ is the Desarguesian projective plane PG(2, 9).
Linear space / line-transitive / point-imprimitive
| [1] |
Betten A, Delandtsheer A, Law M, Niemeyer A C, Praeger C E, Zhou S L. Linear spaces with a line-transitive point-imprimitive automorphism group and Fang-Li parameter gcd(k, r) at most eight. http://arxiv.org/abs/math.CO/0701629 |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
Camina A R, Mishcke S. Line-transitive automorphism groups of linear spaces. Electron J Comb, 1996, 3(1): Research Paper 3 (electronic) |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
Cresp G. Searching for line-transitive, point-imprimitive linear spaces. Honours Dissertation, UWA, Perth, 2001. http://arxiv.org/abs/math.CO/0604532 |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Guan H Y, Tian D L, Zhou S L. Line-transitive point-imprimitive linear spaces with Fang-Li parameter gcd(k, r) at most 10. http://arxiv.org/abs/1112.3432v1 |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4; 2005. http://www.gap-system.org |
| [23] |
|
/
| 〈 |
|
〉 |