Atomic decomposition characterizations of weighted multiparameter Hardy spaces

Xinfeng Wu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1195 -1212.

PDF (159KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1195 -1212. DOI: 10.1007/s11464-012-0213-6
Research Article
RESEARCH ARTICLE

Atomic decomposition characterizations of weighted multiparameter Hardy spaces

Author information +
History +
PDF (159KB)

Abstract

Let wA. In this paper, we introduce weighted-(p, q) atomic Hardy spaces Hwp,q(ℤn ×ℤm) for 0 < p ⩽ 1, q >qw and show that the weighted Hardy space Hwp (ℤn × ℤm) defined via Littlewood-Paley square functions coincides with Hwp,q (ℤn × ℤm) for 0 < p ⩽ 1, q > qw. As applications, we get a general principle on the Hwp (ℤn × ℤm) to Lwp(ℤn ×ℤm) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.

Keywords

Atomic decomposition / multiparameter Hardy spaces / A weight

Cite this article

Download citation ▾
Xinfeng Wu. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front. Math. China, 2012, 7(6): 1195-1212 DOI:10.1007/s11464-012-0213-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bownik M., Li B., Yang D., Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283(3): 392-442

[2]

Carleson L. A counterexample for measures bounded on Hp for the bidisc. Mittag-Leffler Report, No 7, 1974

[3]

Chang S. -Y. A., Fefferman R. A continuous version of dulity of H1 and BMO on the bidisk. Ann Math, 1980, 112(1): 179-201

[4]

Chang S. -Y. A., Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104(3): 455-468

[5]

Chang S. -Y. A., Fefferman R. Some recent developments in Fourier analysis and Hp theory on product domains. Bull Amer Math Soc, 1985, 12(1): 1-43

[6]

Coifman R. A real variable characterization of Hp. Studia Math, 1974, 51: 269-274

[7]

Ding Y., Han Y., Lu G., Wu X. Boundedness of singular integrals on multiparameter weighted Hardy spaces Hwp (ℤn × ℤm). Potential Anal, 2012, 37: 31-56

[8]

Garcia-Cuerva J. W. eighted Hardy spaces. Dissertationes Math, 1979, 162: 1-63

[9]

Garcia-Cuerva J., Rubio de Francia J. Weighted Norm Inequalities and Related Topics, 1985, Amsterdam: North-Holland

[10]

Han Y., Lu G., Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20(3): 670-689

[11]

Krug D. A weighted version of the atomic decomposition for Hp (bi-half space). Indiana Univ Math J, 1988, 37(2): 277-300

[12]

Krug D., Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10(2): 363-378

[13]

Latter R. H. A decomposition of Hp(ℤn) in terms of atoms. Studia Math, 1978, 62: 92-101

[14]

Strömberg J. O., Torchinsky A. Weighted Hardy Spaces, 1989, Berlin-New York: Springer-Verlag

[15]

Zhao K., Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14(2): 319-327

AI Summary AI Mindmap
PDF (159KB)

1019

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/