PDF
(159KB)
Abstract
Let w ∈ A∞. In this paper, we introduce weighted-(p, q) atomic Hardy spaces Hwp,q(ℤn ×ℤm) for 0 < p ⩽ 1, q >qw and show that the weighted Hardy space Hwp (ℤn × ℤm) defined via Littlewood-Paley square functions coincides with Hwp,q (ℤn × ℤm) for 0 < p ⩽ 1, q > qw. As applications, we get a general principle on the Hwp (ℤn × ℤm) to Lwp(ℤn ×ℤm) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.
Keywords
Atomic decomposition
/
multiparameter Hardy spaces
/
A∞ weight
Cite this article
Download citation ▾
Xinfeng Wu.
Atomic decomposition characterizations of weighted multiparameter Hardy spaces.
Front. Math. China, 2012, 7(6): 1195-1212 DOI:10.1007/s11464-012-0213-6
| [1] |
Bownik M., Li B., Yang D., Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283(3): 392-442
|
| [2] |
Carleson L. A counterexample for measures bounded on Hp for the bidisc. Mittag-Leffler Report, No 7, 1974
|
| [3] |
Chang S. -Y. A., Fefferman R. A continuous version of dulity of H1 and BMO on the bidisk. Ann Math, 1980, 112(1): 179-201
|
| [4] |
Chang S. -Y. A., Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104(3): 455-468
|
| [5] |
Chang S. -Y. A., Fefferman R. Some recent developments in Fourier analysis and Hp theory on product domains. Bull Amer Math Soc, 1985, 12(1): 1-43
|
| [6] |
Coifman R. A real variable characterization of Hp. Studia Math, 1974, 51: 269-274
|
| [7] |
Ding Y., Han Y., Lu G., Wu X. Boundedness of singular integrals on multiparameter weighted Hardy spaces Hwp (ℤn × ℤm). Potential Anal, 2012, 37: 31-56
|
| [8] |
Garcia-Cuerva J. W. eighted Hardy spaces. Dissertationes Math, 1979, 162: 1-63
|
| [9] |
Garcia-Cuerva J., Rubio de Francia J. Weighted Norm Inequalities and Related Topics, 1985, Amsterdam: North-Holland
|
| [10] |
Han Y., Lu G., Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20(3): 670-689
|
| [11] |
Krug D. A weighted version of the atomic decomposition for Hp (bi-half space). Indiana Univ Math J, 1988, 37(2): 277-300
|
| [12] |
Krug D., Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10(2): 363-378
|
| [13] |
Latter R. H. A decomposition of Hp(ℤn) in terms of atoms. Studia Math, 1978, 62: 92-101
|
| [14] |
Strömberg J. O., Torchinsky A. Weighted Hardy Spaces, 1989, Berlin-New York: Springer-Verlag
|
| [15] |
Zhao K., Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14(2): 319-327
|