Atomic decomposition characterizations of weighted multiparameter Hardy spaces

Xinfeng WU

PDF(159 KB)
PDF(159 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1195-1212. DOI: 10.1007/s11464-012-0213-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Atomic decomposition characterizations of weighted multiparameter Hardy spaces

Author information +
History +

Abstract

Let wA. In this paper, we introduce weighted-(p, q) atomic Hardy spaces Hwp,q(n×m) for 0p1, qqw and show that the weighted Hardy space Hwp,q(n×m) defined via Littlewood-Paley square functions coincides with Hwp,q(n×m) for 0p1, qqw. As applications, we get a general principle on the Hwp,q(n×m) to Lwp,q(n×m) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.

Keywords

Atomic decomposition / multiparameter Hardy spaces / A weight

Cite this article

Download citation ▾
Xinfeng WU. Atomic decomposition characterizations of weighted multiparameter Hardy spaces. Front Math Chin, 2012, 7(6): 1195‒1212 https://doi.org/10.1007/s11464-012-0213-6

References

[1]
Bownik M, Li B, Yang D, Zhou Y. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators. Math Nachr, 2010, 283(3): 392-442
CrossRef Google scholar
[2]
Carleson L. A counterexample for measures bounded on Hp for the bidisc. Mittag- Leffler Report, No 7, 1974
[3]
Chang S-Y A, Fefferman R. A continuous version of dulity of H1 and BMO on the bidisk. Ann Math, 1980, 112(1): 179-201
CrossRef Google scholar
[4]
Chang S-Y A, Fefferman R. The Calderón-Zygmund decomposition on product domains. Amer J Math, 1982, 104(3): 455-468
CrossRef Google scholar
[5]
Chang S-Y A, Fefferman R. Some recent developments in Fourier analysis and Hp theory on product domains. Bull Amer Math Soc, 1985, 12(1): 1-43
CrossRef Google scholar
[6]
Coifman R. A real variable characterization of Hp. Studia Math, 1974, 51: 269-274
[7]
Ding Y, Han Y, Lu G, Wu X. Boundedness of singular integrals on multiparameter weighted Hardy spaces Hpw (Rn × Rm). Potential Anal, 2012, 37: 31-56
CrossRef Google scholar
[8]
Garcia-Cuerva J. Weighted Hardy spaces. Dissertationes Math, 1979, 162: 1-63
[9]
Garcia-Cuerva J, Rubio de Francia J. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland, 1985
[10]
Han Y, Lu G, Zhao K. Discrete Calderón identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces. J Geom Anal, 2010, 20(3): 670-689
CrossRef Google scholar
[11]
Krug D. A weighted version of the atomic decomposition for Hp (bi-half space). Indiana Univ Math J, 1988, 37(2): 277-300
CrossRef Google scholar
[12]
Krug D, Torchinsky A. A weighted version of Journé’s Lemma. Rev Mat Iberoam, 1994, 10(2): 363-378
CrossRef Google scholar
[13]
Latter R H. A decomposition of Hp(Rn) in terms of atoms. Studia Math, 1978, 62: 92-101
[14]
Strömberg J O, Torchinsky A. Weighted Hardy Spaces. Berlin-New York: Springer- Verlag, 1989
[15]
Zhao K, Han Y. Boundedness of operators on Hardy spaces. Taiwanese J Math, 2010, 14(2): 319-327

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(159 KB)

Accesses

Citations

Detail

Sections
Recommended

/