c*-Quasinormally embedded subgroups of finite groups

Changwen Li , Jianhong Huang , Bin Hu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 703 -716.

PDF (162KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 703 -716. DOI: 10.1007/s11464-012-0212-7
Research Article
RESEARCH ARTICLE

c*-Quasinormally embedded subgroups of finite groups

Author information +
History +
PDF (162KB)

Abstract

Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is called c*-quasinormally embedded in G if there is a subgroup T of G such that G = HT and HT is s-quasinormally embedded in G. We investigate the influence of c*-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.

Keywords

c*-Quasinormally embedded subgroup / p-nilpotent / supersolvable / Sylow subgroup

Cite this article

Download citation ▾
Changwen Li, Jianhong Huang, Bin Hu. c*-Quasinormally embedded subgroups of finite groups. Front. Math. China, 2012, 7(4): 703-716 DOI:10.1007/s11464-012-0212-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asaad M., Ballester-Bolinches A., Pedraza-Aguilera M. C. A note on minimal subgroups of finite groups. Comm Algebra, 1996, 24: 2771-2776

[2]

Asaad M., Heliel A. A. On s-quasinormally embedded subgroups of finite groups. J Pure Appl Algebra, 2001, 165: 129-135

[3]

Ballester-Bolinches A., Pedraza-Aguilera M. C. Sufficient conditions for supersolvability of finite groups. J Pure Appl Algebra, 1998, 127: 113-118

[4]

Ballester-Bolinches A., Wang Y. Finite groups with some c-normal minimal subgroups. J Pure Appl Algebra, 2000, 153: 121-127

[5]

Ballester-Bolinches A., Wang Y., Guo X. c-Supplemented subgroups of finite groups. Glasg Math J, 2000, 42(3): 383-389

[6]

Chao F., Guo X. Finite groups with some ss-quasinormal and c-normal subgroups. Front Math China, 2010, 5(2): 211-219

[7]

Doerk K., Hawkes T. Finite Soluble Groups, 1992, Berlin-New York: Walter de Gruyter

[8]

Guo W. The Theory of Classes of Groups, 2000, Beijing-Boston: Science Press-Kluwer Academic Publishers

[9]

Guo W., Shum K. P., Skiba A. N. G-covering subgroups systems for the classes of supersolvable and nilpotent groups. Israel J Math, 2003, 138: 125-138

[10]

Guo W., Xie F., Li B. Some open questions in the theory of generalized quasinormal subgroups. Sci in China Ser A, 2009, 52(10): 2132-2144

[11]

Guo X., Shum K. P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch Math, 2003, 80: 561-569

[12]

Guo X., Shum K. P. On p-nilpotency of finite group with some subgroup c-supplemented. Algebra Colloq, 2003, 10: 259-266

[13]

Guo X., Shum K. P. Finite p-nilpotent groups with some subgroups c-supplemented. J Aust Math Soc, 2005, 78: 429-439

[14]

Hall P. A characteristic property of soluble groups. J Lond Math Soc, 1937, 12: 188-200

[15]

Huppert B. Endiche Gruppen I, 1967, Berlin: Springer-Verlag

[16]

Huppert B., Blackburn N. Finite Groups III, 1982, Berlin-New York: Springer-Verlag

[17]

Li C. Finite groups with weakly s-semipermutable subgroups. Rend Sem Mat Univ Padova, 2011, 126: 73-88

[18]

Li S., Li Y. On s-quasinormal and c-normal subgroups of a finite group. Czechoslovak Math J, 2008, 58(4): 1083-1095

[19]

Li S., Shen Z., Liu J. The influence of ss-quasinormality of some subgroups on the structure of finite groups. J Algebra, 2008, 319: 4275-4287

[20]

Li Y. On weakly s-supplemented maximal subgroups of Sylow subgroups of finite groups. Adv Math, 2011, 40(4): 413-420

[21]

Li Y. G-covering systems of subgroups for the class of supersoluble groups. Siberian Math J, 2006, 46(3): 474-480

[22]

Li Y., Li B. On minimal weakly s-supplemented subgroups of finite groups. J Algebra Appl, 2011, 10(5): 811-820

[23]

Li Y., Peng K. π-quasinormally embedded and c-supplemented subgroup of finite group. Front Math China, 2008, 3(4): 511-521

[24]

Li Y., Wang Y. On π-quasinormally embedded subgroups of finite group. J Algebra, 2004, 281: 109-123

[25]

Li Y., Wang Y. The influence of the properties of maximal subgroups on the structure of a finite group. Adv Math, 2007, 36(5): 599-606

[26]

Li Y., Wang Y., Wei H. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298

[27]

Miao L. Finite group with some maximal subgroups of Sylow subgroups Q-supplemented. Comm Algebra, 2007, 35: 2789-2800

[28]

Miao L., Wang Y. M-supplemented subgroups and their properties. Comm Algebra, 2009, 37(2): 594-603

[29]

Ramadan M., Ezzat-Mohamed M., Heliel A. A. On c-normality of certain subgroups of prime power order of finite groups. Arch Math, 2005, 85: 203-210

[30]

Skiba A. N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315: 192-209

[31]

Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 467-478

[32]

Wang Y., Wei H. On a problem of Skiba from the Kourovka Notebook. Sci China Ser A, 2004, 47(1): 96-103

[33]

Wei H., Wang Y. On c*-normality and its properties. J Group Theory, 2007, 10: 211-223

AI Summary AI Mindmap
PDF (162KB)

925

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/