c?-Quasinormally embedded subgroups of finite groups

Changwen LI, Jianhong HUANG, Bin HU

PDF(162 KB)
PDF(162 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 703-716. DOI: 10.1007/s11464-012-0212-7
RESEARCH ARTICLE
RESEARCH ARTICLE

c?-Quasinormally embedded subgroups of finite groups

Author information +
History +

Abstract

Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is called c-quasinormally embedded in G if there is a subgroup T of G such that G = HT and HT is s-quasinormally embedded in G.We investigate the influence of c-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.

Keywords

c-Quasinormally embedded subgroup / p-nilpotent / supersolvable / Sylow subgroup

Cite this article

Download citation ▾
Changwen LI, Jianhong HUANG, Bin HU. c-Quasinormally embedded subgroups of finite groups. Front Math Chin, 2012, 7(4): 703‒716 https://doi.org/10.1007/s11464-012-0212-7

References

[1]
Asaad M, Ballester-Bolinches A, Pedraza-Aguilera M C. A note on minimal subgroups of finite groups. Comm Algebra, 1996, 24: 2771-2776
[2]
Asaad M, Heliel A A. On s-quasinormally embedded subgroups of finite groups. J Pure Appl Algebra, 2001, 165: 129-135
CrossRef Google scholar
[3]
Ballester-Bolinches A, Pedraza-Aguilera M C. Sufficient conditions for supersolvability of finite groups. J Pure Appl Algebra, 1998, 127: 113-118
CrossRef Google scholar
[4]
Ballester-Bolinches A, Wang Y. Finite groups with some c-normal minimal subgroups. J Pure Appl Algebra, 2000, 153: 121-127
CrossRef Google scholar
[5]
Ballester-Bolinches A, Wang Y, Guo X. c-Supplemented subgroups of finite groups. Glasg Math J, 2000, 42(3): 383-389
CrossRef Google scholar
[6]
Chao F, Guo X. Finite groups with some ss-quasinormal and c-normal subgroups. Front Math China, 2010, 5(2): 211-219
CrossRef Google scholar
[7]
Doerk K, Hawkes T. Finite Soluble Groups. Berlin-New York: Walter de Gruyter, 1992
[8]
Guo W. The Theory of Classes of Groups. Beijing-Boston: Science Press-Kluwer Academic Publishers, 2000
[9]
Guo W, Shum K P, Skiba A N. G-covering subgroups systems for the classes of supersolvable and nilpotent groups. Israel J Math, 2003, 138: 125-138
CrossRef Google scholar
[10]
Guo W, Xie F, Li B. Some open questions in the theory of generalized quasinormal subgroups. Sci in China Ser A, 2009, 52(10): 2132-2144
CrossRef Google scholar
[11]
Guo X, Shum K P. On c-normal maximal and minimal subgroups of Sylow p-subgroups of finite groups. Arch Math,2003, 80: 561-569
CrossRef Google scholar
[12]
Guo X, Shum K P. On p-nilpotency of finite group with some subgroup c-supplemented. Algebra Colloq, 2003, 10: 259-266
[13]
Guo X, Shum K P. Finite p-nilpotent groups with some subgroups c-supplemented. J Aust Math Soc, 2005, 78: 429-439
CrossRef Google scholar
[14]
Hall P. A characteristic property of soluble groups. J Lond Math Soc, 1937, 12: 188-200
CrossRef Google scholar
[15]
Huppert B. Endiche Gruppen I. Berlin: Springer-Verlag, 1967
[16]
Huppert B, Blackburn N. Finite Groups III. Berlin-New York: Springer-Verlag, 1982
[17]
Li C. Finite groups with weakly s-semipermutable subgroups. Rend Sem Mat Univ Padova, 2011, 126: 73-88
[18]
Li S, Li Y. On s-quasinormal and c-normal subgroups of a finite group. Czechoslovak Math J, 2008, 58(4): 1083-1095
CrossRef Google scholar
[19]
Li S, Shen Z, Liu J. The influence of ss-quasinormality of some subgroups on the structure of finite groups. J Algebra, 2008, 319: 4275-4287
CrossRef Google scholar
[20]
Li Y. On weakly s-supplemented maximal subgroups of Sylow subgroups of finite groups. Adv Math, 2011, 40(4): 413-420
[21]
Li Y. G-covering systems of subgroups for the class of supersoluble groups. Siberian Math J, 2006, 46(3): 474-480
CrossRef Google scholar
[22]
Li Y, Li B. On minimal weakly s-supplemented subgroups of finite groups. J Algebra Appl, 2011, 10(5): 811-820
CrossRef Google scholar
[23]
Li Y, Peng K. π-quasinormally embedded and c-supplemented subgroup of finite group. Front Math China, 2008, 3(4): 511-521
CrossRef Google scholar
[24]
Li Y, Wang Y. On π-quasinormally embedded subgroups of finite group. J Algebra, 2004, 281: 109-123
CrossRef Google scholar
[25]
Li Y, Wang Y. The influence of the properties of maximal subgroups on the structure of a finite group. Adv Math, 2007, 36(5): 599-606
[26]
Li Y, Wang Y, Wei H. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded. Acta Math Hungar, 2005, 108(4): 283-298
CrossRef Google scholar
[27]
Miao L. Finite group with some maximal subgroups of Sylow subgroups Q-supplemented. Comm Algebra, 2007, 35: 2789-2800
[28]
Miao L, Wang Y. ℳ-supplemented subgroups and their properties. Comm Algebra, 2009, 37(2): 594-603
CrossRef Google scholar
[29]
Ramadan M, Ezzat-Mohamed M, Heliel A A. On c-normality of certain subgroups of prime power order of finite groups. Arch Math, 2005, 85: 203-210
CrossRef Google scholar
[30]
Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 2007, 315: 192-209
CrossRef Google scholar
[31]
Wang Y. Finite groups with some subgroups of Sylow subgroups c-supplemented. J Algebra, 2000, 224: 467-478
CrossRef Google scholar
[32]
Wang Y, Wei H. On a problem of Skiba from the Kourovka Notebook. Sci China Ser A, 2004, 47(1): 96-103
CrossRef Google scholar
[33]
Wei H, Wang Y. On c-normality and its properties. J Group Theory, 2007, 10: 211-223
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(162 KB)

Accesses

Citations

Detail

Sections
Recommended

/