Inhomogeneous quantum codes (II): non-additive case
Weiyang WANG, Keqin FENG
Inhomogeneous quantum codes (II): non-additive case
The quantum codes have been generalized to inhomogeneous case and the stabilizer construction has been established to get additive inhomogeneous quantum codes in [Sci. China Math., 2010, 53: 2501-2510]. In this paper, we generalize the known constructions to construct non-additive inhomogeneous quantum codes and get examples of good d-ary quantum codes.
Quantum code / inhomogeneous code / mixed code / finite abelian group / character / quadratic generalized boolean function
[1] |
Calderbank A R, Rains E M, PShor P W, Sloane N J A. Quantum error correction via codes over GF(4). IEEE Trans Inf Theory, 1998, 44: 1369-1387
CrossRef
Google scholar
|
[2] |
Feng K, Ling S, Xing C. Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans Inf Theory, 2006, 52: 986-991
CrossRef
Google scholar
|
[3] |
Feng K, Xing C. A new construction of quantum error-correcting codes. Trans Amer Math Soc, 2007, 360: 2007-2019
CrossRef
Google scholar
|
[4] |
Gottesman D. Fault-tolerant quantum computation with high-dimensional systems. LNCS, 1999, 1509: 302-313
|
[5] |
Ketkar A, Klappenecker A, Kumar S, Sarvepalli P K. Nobinary stabilizer codes over finite field. IEEE Trans Inf Theory, 2006, 52: 4892-4914
CrossRef
Google scholar
|
[6] |
Wang W, Feng R, Feng K. Inhomogenous quantum codes (I): additive case. Sci China Math, 2010, 53: 2501-2510
CrossRef
Google scholar
|
/
〈 | 〉 |