Inhomogeneous quantum codes (II): non-additive case

Weiyang WANG, Keqin FENG

PDF(165 KB)
PDF(165 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 573-586. DOI: 10.1007/s11464-012-0209-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Inhomogeneous quantum codes (II): non-additive case

Author information +
History +

Abstract

The quantum codes have been generalized to inhomogeneous case and the stabilizer construction has been established to get additive inhomogeneous quantum codes in [Sci. China Math., 2010, 53: 2501-2510]. In this paper, we generalize the known constructions to construct non-additive inhomogeneous quantum codes and get examples of good d-ary quantum codes.

Keywords

Quantum code / inhomogeneous code / mixed code / finite abelian group / character / quadratic generalized boolean function

Cite this article

Download citation ▾
Weiyang WANG, Keqin FENG. Inhomogeneous quantum codes (II): non-additive case. Front Math Chin, 2012, 7(3): 573‒586 https://doi.org/10.1007/s11464-012-0209-2

References

[1]
Calderbank A R, Rains E M, PShor P W, Sloane N J A. Quantum error correction via codes over GF(4). IEEE Trans Inf Theory, 1998, 44: 1369-1387
CrossRef Google scholar
[2]
Feng K, Ling S, Xing C. Asymptotic bounds on quantum codes from algebraic geometry codes. IEEE Trans Inf Theory, 2006, 52: 986-991
CrossRef Google scholar
[3]
Feng K, Xing C. A new construction of quantum error-correcting codes. Trans Amer Math Soc, 2007, 360: 2007-2019
CrossRef Google scholar
[4]
Gottesman D. Fault-tolerant quantum computation with high-dimensional systems. LNCS, 1999, 1509: 302-313
[5]
Ketkar A, Klappenecker A, Kumar S, Sarvepalli P K. Nobinary stabilizer codes over finite field. IEEE Trans Inf Theory, 2006, 52: 4892-4914
CrossRef Google scholar
[6]
Wang W, Feng R, Feng K. Inhomogenous quantum codes (I): additive case. Sci China Math, 2010, 53: 2501-2510
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(165 KB)

Accesses

Citations

Detail

Sections
Recommended

/