Components of generalized Kato resolvent set and single-valued extension property

Qiaofen Jiang , Huaijie Zhong

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 695 -702.

PDF (118KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 695 -702. DOI: 10.1007/s11464-012-0207-4
Research Article
RESEARCH ARTICLE

Components of generalized Kato resolvent set and single-valued extension property

Author information +
History +
PDF (118KB)

Abstract

In this paper, we use the constancy of certain subspace valued mappings on the components of the generalized Kato resolvent set and the equivalences of the single-valued extension property at a point 0 for operators which admit a generalized Kato decomposition to obtain a classification of the components of the generalized Kato resolvent set of operators. We also give some applications of these results.

Keywords

Banach space / generalized Kato decomposition / single-valued extension property

Cite this article

Download citation ▾
Qiaofen Jiang, Huaijie Zhong. Components of generalized Kato resolvent set and single-valued extension property. Front. Math. China, 2012, 7(4): 695-702 DOI:10.1007/s11464-012-0207-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aiena P. Fredholm and Local Spectral Theory, With Applications to Multipliers, 2004, Amsterdam: Kluwer Academic Pub

[2]

Aiena P., Colasante M., González M. Operators which have a closed quasi-nilpotent part. Proc Amer Math Soc, 2002, 130: 2701-2710

[3]

Aiena P., Miller T., Neumann M. On a localized single valued extension property. Math Proc R Ir Acad, 2004, 104A: 17-34

[4]

Aiena P., Monsalve O. Operators which do not have the single valued extension property. J Math Anal Appl, 2000, 250(2): 435-448

[5]

Aiena P., Monsalve O. The single valued extension property and the generalized Kato decomposition property. Acta Sci Math (Szeged), 2001, 67(3–4): 791-807

[6]

Aiena P., Rosas E. Single-valued extension property at the points of the approximate point spectrum. J Math Anal Appl, 2003, 279(1): 180-188

[7]

Aiena P., Villafañe F. Components of resolvent sets and local spectral theory. Contem Math, 2003, 328: 1-14

[8]

Bouamama W. Opérateurs pseudo-Fredholm dans les espaces de Banach. Rend Circ Mat Palermo (2), 2004, 53(3): 313-324

[9]

Dunford N. Spectral theory II. Resolutions of the identity. Pacific J Math, 1952, 2(4): 559-614

[10]

Dunford N. Spectral operators. Pacific J Math, 1954, 4(3): 321-354

[11]

Dunford N., Schwartz J. Linear Operators, Part III, 1971, New York: Wiley

[12]

Finch J. The single valued extension property on a Banach space. Pacific J Math, 1975, 58(1): 61-69

[13]

Gowers W., Maurey B. The unconditional basic sequence problem. J Amer Math Soc, 1993, 6(4): 851-874

[14]

Jiang Q., Zhong H. Generalized Kato decomposition, single-valued extension property and approximate point spectrum. J Math Anal Appl, 2009, 356: 322-327

[15]

Koliha J. A generalized Drazin inverse. Glas Math J, 1996, 38: 367-381

[16]

Koliha J. Isolated spectral points. Proc Amer Math Soc, 1996, 124: 3417-3424

[17]

Mbekhta M. Généralisation de la décomposition de Kato aux opérateurs paramormaux et spectraux. Glas Math J, 1987, 29: 159-175

[18]

Mbekhta M. Sur l’unicité de la décomposition de Kato généralisée. Acta Sci Math (Szeged), 1990, 54: 367-377

[19]

Mbekhta M. Sur la théorie spectrale locale et limite des nilpotents. Proc Amer Math Soc, 1990, 110(3): 621-631

[20]

Schmoeger C. Semi-Fredholm operators and local spectral theory. Demon Math, 1995, 28: 997-1004

[21]

Searcóid M. Ó., West T. Continuity of the generalized kernel and range for semi-Fredholm operators. Math Proc Camb Phil Soc, 1989, 105: 513-522

AI Summary AI Mindmap
PDF (118KB)

859

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/