Certain categories of modules for twisted affine Lie algebras
Yongcun GAO, Jiayuan FU
Certain categories of modules for twisted affine Lie algebras
In this paper, using generating functions, we study two categories and of modules for twisted affine Lie algebras [σ], which were firstly introduced and studied for untwisted affine Lie algebras by H. -S. Li [Math Z, 2004, 248: 635-664]. We classify integrable irreducible [σ]-modules in categories and , where is proved to contain the well-known evaluation modules and to unify highest weight modules, evaluation modules and their tensor product modules. We determine also the isomorphism classes of those irreducible modules.
Twisted affine Lie algebra / module / category
[1] |
Chari V. Integrable representations of affine Lie algebras. Invent Math, 1986, 85: 317-335
CrossRef
Google scholar
|
[2] |
Chari V, Pressley A N. New unitary representations of loop groups. Math Ann, 1986, 275: 87-104
CrossRef
Google scholar
|
[3] |
Chari V, Pressley A N. A new family of irreducible, integrable modules for affine Lie algebras. Math Ann, 1987, 277: 543-562
CrossRef
Google scholar
|
[4] |
Chari V, Pressley A N. Integrable representations of twisted affine Lie algebras. J Algebra, 1988, 113: 438-464
CrossRef
Google scholar
|
[5] |
Dong C, Li H-S, Mason G. Regularity of rational vertex operator algebras. Adv Math, 1997, 132: 148- 166
CrossRef
Google scholar
|
[6] |
Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure and Appl Math, Vol 134. Boston: Academic Press, 1988
|
[7] |
Kac V G. Infinite Dimensional Lie Algebras. 3rd ed. Cambridge: Cambridge University Press, 1990
CrossRef
Google scholar
|
[8] |
Lepowsky J, Li H-S. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227. Boston: Birkhäuser, 2004
CrossRef
Google scholar
|
[9] |
Li H-S. On certain categories of modules for affine Lie algebras. Math Z, 2004, 248: 635-664
CrossRef
Google scholar
|
/
〈 | 〉 |