Certain categories of modules for twisted affine Lie algebras

Yongcun Gao , Jiayuan Fu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1073 -1093.

PDF (174KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (6) : 1073 -1093. DOI: 10.1007/s11464-012-0203-8
Research Article
RESEARCH ARTICLE

Certain categories of modules for twisted affine Lie algebras

Author information +
History +
PDF (174KB)

Abstract

In this paper, using generating functions, we study two categories [graphic not available: see fulltext] and [graphic not available: see fulltext] of modules for twisted affine Lie algebras [graphic not available: see fulltext], which were firstly introduced and studied for untwisted affine Lie algebras by H. -S. Li [Math Z, 2004, 248: 635–664]. We classify integrable irreducible [graphic not available: see fulltext]-modules in categories [graphic not available: see fulltext] and [graphic not available: see fulltext], where [graphic not available: see fulltext] is proved to contain the well-known evaluation modules and [graphic not available: see fulltext] to unify highest weight modules, evaluation modules and their tensor product modules. We determine also the isomorphism classes of those irreducible modules.

Keywords

Twisted affine Lie algebra / module / category

Cite this article

Download citation ▾
Yongcun Gao, Jiayuan Fu. Certain categories of modules for twisted affine Lie algebras. Front. Math. China, 2012, 7(6): 1073-1093 DOI:10.1007/s11464-012-0203-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chari V. Integrable representations of affine Lie algebras. Invent Math, 1986, 85: 317-335

[2]

Chari V., Pressley A. N. New unitary representations of loop groups. Math Ann, 1986, 275: 87-104

[3]

Chari V., Pressley A. N. A new family of irreducible, integrable modules for affine Lie algebras. Math Ann, 1987, 277: 543-562

[4]

Chari V., Pressley A. N. Integrable representations of twisted affine Lie algebras. J Algebra, 1988, 113: 438-464

[5]

Dong C., Li H.-S., Mason G. Regularity of rational vertex operator algebras. Adv Math, 1997, 132: 148-166

[6]

Frenkel I., Lepowsky J., Meurman A. Vertex Operator Algebras and the Monster. Pure and Appl Math, Vol 134, 1988, Boston: Academic Press

[7]

Kac V. G. Infinite Dimensional Lie Algebras, 1990 3rd ed. Cambridge: Cambridge University Press

[8]

Lepowsky J., Li H.-S. Introduction to Vertex Operator Algebras and Their Representations. Progress in Math, Vol 227, 2004, Boston: Birkhäuser

[9]

Li H. -S. On certain categories of modules for affine Lie algebras. Math Z, 2004, 248: 635-664

AI Summary AI Mindmap
PDF (174KB)

952

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/