Module-relative-Hochschild (co)homology of tensor products

Yuan CHEN

PDF(150 KB)
PDF(150 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 415-426. DOI: 10.1007/s11464-012-0200-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Module-relative-Hochschild (co)homology of tensor products

Author information +
History +

Abstract

In this paper, we consider the module-relative-Hochschild homology and cohomology of tensor products of algebras and relate them to those of the factor algebras. Moreover, we show that the tensor product is formally smooth if and only if one of its factor algebras is formally smooth and the other is separable.

Keywords

Tensor product / module-relative-Hochschild (co)homology / formal smoothness

Cite this article

Download citation ▾
Yuan CHEN. Module-relative-Hochschild (co)homology of tensor products. Front Math Chin, 2012, 7(3): 415‒426 https://doi.org/10.1007/s11464-012-0200-y

References

[1]
Ardizzoni A. Separable functors and formal smoothness. J K-Theory, 2008, 1: 535-582
CrossRef Google scholar
[2]
Ardizzoni A, Brzeziński T, Menini C. Formally smooth bimodules. J Pure Appl Algebra, 2008, 212: 1072-1085
CrossRef Google scholar
[3]
Ardizzoni A, Menini C, Stefan D. Hochschild cohomology and smoothness in monoidal categories. J Pure Appl Algebra, 2007, 208: 297-330
CrossRef Google scholar
[4]
Cartan H, Eilenberg S. Homological Algebra. Princeton: Princeton University Press, 1956
[5]
Crawley-Boevey W, Etingof P, Ginzburg V. Noncommutative geometry and quiver algebras. Adv Math, 2007, 209: 274-336
CrossRef Google scholar
[6]
Cuntz J, Quillen D. Algebra extensions and nonsingularity. J Amer Math Soc, 1995, 8: 251-289
CrossRef Google scholar
[7]
Enochs E E, Jenda O M G. Relative Homological Algebra. Berlin: Walter de Gruyter, 2000
[8]
Hilton P J, Stammbach U. A Course in Homological Algebra. Graduate Texts in Mathematics, Vol 4. New York: Springer, 1971
[9]
Hochschild G. On the cohomology groups of an associative algebra. Ann Math, 1945, 46: 58-67
CrossRef Google scholar
[10]
Hochschild G. Relative homological algebra. Trans Amer Math Soc, 1956, 82: 246-269
CrossRef Google scholar
[11]
Jara P, Llena D, Merino L, Stefan D. Hereditary and formally smooth coalgebras. Algebr Represent Theory, 2005, 8(3): 363-374
CrossRef Google scholar
[12]
Kontsevich M, Rosenberg A. Noncommutative smooth spaces. In: The Gelfand Mathematical Seminars, 1996-1999. Boston: Birkhäuser, 2000, 85-108
[13]
Kontsevich M, Rosenberg A. Noncommutative spaces. Preprint MPI–004–5, 2004
[14]
Mac Lane S. Categories for the Working Mathematician. 2nd ed. Graduate Texts in Mathematics, Vol 5. New York: Springer-Verlag, 1998
[15]
Mac Lane S. Homology. Berlin: Springer-Verlag, 1975
[16]
Schelter W F. Smooth algebras. J Algebra, 1986, 103: 677-685
CrossRef Google scholar
[17]
Sugano K. Note on separability of endomorphism rings. J Fac Sci Hokkaido Univ Ser I, 1970-<month>7</month>-<day>1</day>, 21: 196-208

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(150 KB)

Accesses

Citations

Detail

Sections
Recommended

/