A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations

Paul Tsuji , Lexing Ying

Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 347 -363.

PDF (470KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 347 -363. DOI: 10.1007/s11464-012-0191-8
Research Article
RESEARCH ARTICLE

A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations

Author information +
History +
PDF (470KB)

Abstract

This paper is concerned with the fast iterative solution of linear systems arising from finite difference discretizations in electromagnetics. The sweeping preconditioner with moving perfectly matched layers previously developed for the Helmholtz equation is adapted for the popular Yee grid scheme for wave propagation in inhomogeneous, anisotropic media. Preliminary numerical results are presented for typical examples.

Keywords

Electromagnetic scattering / Yee grid / finite difference methods / perfectly matched layers / LDLT factorizations / multifrontal method / wave propagation in inhomogeneous and anisotropic media / matrix preconditioners

Cite this article

Download citation ▾
Paul Tsuji, Lexing Ying. A sweeping preconditioner for Yee’s finite difference approximation of time-harmonic Maxwell’s equations. Front. Math. China, 2012, 7(2): 347-363 DOI:10.1007/s11464-012-0191-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Champagne N. J., Berryman J. G., Buettner H. M. FDFD: A 3D Finite-difference frequency-domain code for electromagnetic induction tomography. J Comput Phys, 2001, 170(2): 830-848

[2]

Chew W. C., Jin J., Michielssen E., Song J. Fast and Efficient Algorithms in Computational Electromagnetics, 2001, London: Artech House

[3]

Chew W. C., Weedon W. H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microwave Opt Tech Lett, 1994, 7(13): 599-604

[4]

Engquist B., Majda A. Absorbing boundary conditions for the numerical simulation of waves. Math Comp, 1977, 31: 629-651

[5]

Engquist B., Ying L. Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Comm Pure Appl Math, 2011, 64: 697-735

[6]

Engquist B., Ying L. Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model Simul, 2011, 9: 686-710

[7]

Jin J. The Finite Element Method in Electromagnetics, 2002, Hoboken: Wiley-IEEE Press

[8]

Lin L, Lu J, Ying L, Car R, E W. Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems. Commun Math Sci (to appear)

[9]

Mur G. Absorbing boundary conditions for the finite-difference approximation of timedomain electromagnetic field equations. IEEE Trans Electromag Compat, 1981, 23: 377-382

[10]

Taflove A., Hagness S. Computational Electrodynamics: the Finite-difference Timedomain Method, 2005, London: Artech House

[11]

Werner G. R., Cary J. R. A stable FDTD algorithm for non-diagonal, anisotropic dielectrics. J Comput Phys, 2007, 226(1): 1085-1101

AI Summary AI Mindmap
PDF (470KB)

926

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/