Partial expansion of a Lipschitz domain and some applications

Jay Gopalakrishnan , Weifeng Qiu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 249 -272.

PDF (320KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (2) : 249 -272. DOI: 10.1007/s11464-012-0189-2
Research Article
RESEARCH ARTICLE

Partial expansion of a Lipschitz domain and some applications

Author information +
History +
PDF (320KB)

Abstract

We show that a Lipschitz domain can be expanded solely near a part of its boundary, assuming that the part is enclosed by a piecewise C1 curve. The expanded domain as well as the extended part are both Lipschitz. We apply this result to prove a regular decomposition of standard vector Sobolev spaces with vanishing traces only on part of the boundary. Another application in the construction of low-regularity projectors into finite element spaces with partial boundary conditions is also indicated.

Keywords

Lipschitz domain / regular decomposition / mixed boundary condition / transversal vector field / extension operator / Schwarz preconditioner / bounded cochain projector / divergence / curl / Schöberl projector

Cite this article

Download citation ▾
Jay Gopalakrishnan, Weifeng Qiu. Partial expansion of a Lipschitz domain and some applications. Front. Math. China, 2012, 7(2): 249-272 DOI:10.1007/s11464-012-0189-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amrouche C., Bernardi C., Dauge M., Girault V. Vector potentials in three-dimensional non-smooth domains. Math Methods Appl Sci, 1998, 21: 823-864

[2]

Arnold D. N., Falk R. S., Winther R. Preconditioning in H(div) and applications. Math Comp, 1997, 66: 957-984

[3]

Arnold D. N., Falk R. S., Winther R. Finite element exterior calculus: from Hodge theory to numerical stability. Bull Amer Math Soc (NS), 2010, 47: 281-353

[4]

Birman M., Solomyak M. Construction in a piecewise smooth domain of a function of the class H2 from the value of the conormal derivative. J Math Sov, 1990, 49: 1128-1136

[5]

Bonnet-Ben Dhia A. -S., Hazard C., Lohrengel S. A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J Appl Math, 1999, 59: 2028-2044

[6]

Bramble J. H. A proof of the inf-sup condition for the Stokes equations on Lipschitz domains. Math Models Methods Appl Sci, 2003, 13: 361-371

[7]

Brezzi F., Fortin M. Mixed and Hybrid Finite Element Methods, 1991, New York: Springer-Verlag

[8]

Buffa A., Costabel M., Sheen D. On traces for H(curl, Ω) in Lipschitz domains. J Math Anal Appl, 2002, 276: 845-867

[9]

Christiansen S. H., Winther R. Smoothed projections in finite element exterior calculus. Math Comp, 2008, 77: 813-829

[10]

Clément Ph. Approximation by finite element functions using local regularization. RAIRO, Analyse Numérique, 1975, R-2(9e année): 77-84

[11]

Demkowicz L., Gopalakrishnan J., Schöberl J. Polynomial extension operators. Part II. SIAM J Numer Anal, 2009, 47: 3293-3324

[12]

Demkowicz L, Gopalakrishnan J, Schöberl J. Polynomial extension operators. Part III. Math Comp, 2011, DOI: 10.1090/S0025-5718-2011-02536-6

[13]

Falk R. S. Finite element methods for linear elasticity. Mixed Finite Elements, Compatibility Conditions, and Applications. Lectures given at the C.I.M.E. Summer School Held in Cetraro, Italy, June 26–July 1, 2006, 2008, Berlin: Springer-Verlag, 160-194

[14]

Girault V., Raviart P. -A. Finite ElementMethods for Navier-Stokes Equations, 1986, New York: Springer-Verlag

[15]

Gopalakrishnan J, Oh M. Commuting smoothed projectors in weighted norms with an application to axisymmetric Maxwell equations. J Sci Comput, 2011, DOI: 10.1007/s10915-011-9513-3

[16]

Gopalakrishnan J., Pasciak J. E. Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math Comp, 2003, 72: 1-15

[17]

Grisvard P. Elliptic Problems in Nonsmooth Domains, 1985, Marshfield: Pitman Advanced Publishing Program

[18]

Hestenes M. R. Extension of the range of a differentiable function. Duke Math J, 1941, 8: 183-192

[19]

Hiptmair R, Li J, Zhou J. Universal extension for Sobolev spaces of differential forms and applications. Tech Rep 2009-22, Eidgenössische Technische Hochschule, 2009

[20]

Hiptmair R., Toselli A. Overlapping and multilevel Schwarz methods for vector valued elliptic problems in three dimensions. Parallel solution of partial differential equations (Minneapolis, MN, 1997), 2000, New York: Springer, 181-208

[21]

Hofmann S., Mitrea M., Taylor M. Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains. J Geom Anal, 2007, 17: 593-647

[22]

Ladyzhenskaya O. A. The Mathematical Theory of Viscous Incompressible Flow, 1963, New York: Gordon and Breach Science Publishers

[23]

McLean W. Strongly Elliptic Systems and Boundary Integral Equations, 2000, Cambridge: Cambridge University Press

[24]

Nečas J. Les méthodes directes en théorie des équations elliptiques, 1967, Paris: Masson et Cie, Éditeurs

[25]

Pasciak J. E., Zhao J. Overlapping Schwarz methods in H(curl) on polyhedral domains. J Numer Math, 2002, 10: 221-234

[26]

Schöberl J. Commuting quasi-interpolation operators for mixed finite elements. Tech Rep. ISC-01-10-MATH, Institute for Scientific Computation, Texas A&M University, College Station, 2001

[27]

Schöberl J. A multilevel decomposition result in H(curl). In: Wesseling P, Oosterlee C, Hemker P, eds. Proceedings of the 8th European Multigrid Conference, EMG 2005, TU Delft. 2008

[28]

Schöberl J. A posteriori error estimates for Maxwell equations. Math Comp, 2008, 77: 633-649

[29]

Scott L. R., Vogelius M. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél Math Anal Numér, 1985, 19: 111-143

[30]

Stein E. M. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton University Press

[31]

Vassilevski P. S., Wang J. P. Multilevel iterative methods for mixed finite element discretizations of elliptic problems. Numer Math, 1992, 63: 503-520

AI Summary AI Mindmap
PDF (320KB)

926

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/