Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras

Jixia Yuan , Wende Liu

Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 203 -216.

PDF (135KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (1) : 203 -216. DOI: 10.1007/s11464-012-0185-6
Research Article
RESEARCH ARTICLE

Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras

Author information +
History +
PDF (135KB)

Abstract

The principal filtration of the infinite-dimensional odd contact Lie superalgebra over a field of characteristic p > 2 is proved to be invariant under the automorphism group by investigating ad-nilpotent elements and determining certain invariants such as subalgebras generated by some ad-nilpotent elements. Then, it is proved that two automorphisms coincide if and only if they coincide on the −1 component with respect to the principal grading. Finally, all the odd contact superalgebras are classified up to isomorphisms.

Keywords

Lie superalgebra / filtration / automorphism / classification

Cite this article

Download citation ▾
Jixia Yuan, Wende Liu. Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras. Front. Math. China, 2012, 8(1): 203-216 DOI:10.1007/s11464-012-0185-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kac V. G.. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv Math, 1998, 139: 1-55

[2]

Liu W. D., He Y. H.. Finite-dimensional special odd Hamiltonian superalgebras in prime characteristic. Commun Contemp Math, 2009, 11(4): 523-546

[3]

Liu W. D., Zhang Y. Z.. Infinite-dimensional modular odd Hamiltonian Lie superalgebras. Comm Algebra, 2004, 32: 2341-2357

[4]

Liu W. D., Zhang Y. Z.. Finite-dimensional odd Hamiltonian superalgebras over a field of prime characteristic. J Aust Math Soc, 2005, 79: 113-130

[5]

Liu W. D., Zhang Y. Z., Wang X. L.. The derivation algebra of the Cartan-type Lie superalgebra HO. J Algebra, 2004, 273: 176-205

[6]

Strade H., Farnsteiner R.. Modular Lie Algebras and Their Representations, 1988, New York: Marcel Dekker

[7]

Zhang Y. Z., Fu H. C.. Finite-dimensional Hamiltonian Lie superalgebras. Comm Algebra, 2002, 30: 2651-2673

[8]

Zhang Y. Z., Liu W. D.. Infinite-dimensional modular Lie superalgebras W and S of Cartan Type. Algebra Colloq, 2006, 132: 197-210

[9]

Zhang Y. Z., Nan J. Z.. Finite-dimensional Lie superalgebras W(m, n, t) and S(m, n, t) of Cartan-type. Adv Math (China), 1998, 27: 240-246

AI Summary AI Mindmap
PDF (135KB)

985

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/