Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras

Jixia YUAN, Wende LIU

PDF(135 KB)
PDF(135 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 203-216. DOI: 10.1007/s11464-012-0185-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras

Author information +
History +

Abstract

The principal filtration of the infinite-dimensional odd contact Lie superalgebra over a field of characteristic p>2 is proved to be invariant under the automorphism group by investigating ad-nilpotent elements and determining certain invariants such as subalgebras generated by some ad-nilpotent elements. Then, it is proved that two automorphisms coincide if and only if they coincide on the -1 component with respect to the principal grading. Finally, all the odd contact superalgebras are classified up to isomorphisms.

Keywords

Lie superalgebra / filtration / automorphism / classification

Cite this article

Download citation ▾
Jixia YUAN, Wende LIU. Filtration, automorphisms, and classification of infinite-dimensional odd contact superalgebras. Front Math Chin, 2013, 8(1): 203‒216 https://doi.org/10.1007/s11464-012-0185-6

References

[1]
Kac V G. Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv Math, 1998, 139: 1-55
CrossRef Google scholar
[2]
Liu W D, He Y H. Finite-dimensional special odd Hamiltonian superalgebras in prime characteristic. Commun Contemp Math, 2009, 11(4): 523-546
CrossRef Google scholar
[3]
Liu W D, Zhang Y Z. Infinite-dimensional modular odd Hamiltonian Lie superalgebras. Comm Algebra, 2004, 32: 2341-2357
CrossRef Google scholar
[4]
Liu W D, Zhang Y Z. Finite-dimensional odd Hamiltonian superalgebras over a field of prime characteristic. J Aust Math Soc, 2005, 79: 113-130
CrossRef Google scholar
[5]
Liu W D, Zhang Y Z, Wang X L. The derivation algebra of the Cartan-type Lie superalgebra HO. J Algebra, 2004, 273: 176-205
CrossRef Google scholar
[6]
Strade H, Farnsteiner R. Modular Lie Algebras and Their Representations. New York: Marcel Dekker, 1988
[7]
Zhang Y Z, Fu H C. Finite-dimensional Hamiltonian Lie superalgebras. Comm Algebra, 2002, 30: 2651-2673
CrossRef Google scholar
[8]
Zhang Y Z, Liu W D. Infinite-dimensional modular Lie superalgebras W and S of Cartan Type. Algebra Colloq, 2006, 132: 197-210
[9]
Zhang Y Z, Nan J Z. Finite-dimensional Lie superalgebras W(m, n, t) and S(m, n, t) of Cartan-type. Adv Math (China), 1998, 27: 240-246

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(135 KB)

Accesses

Citations

Detail

Sections
Recommended

/