List edge and list total coloring of 1-planar graphs

Xin ZHANG, Jianliang WU, Guizhen LIU

PDF(164 KB)
PDF(164 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (5) : 1005-1018. DOI: 10.1007/s11464-012-0184-7
RESEARCH ARTICLE
RESEARCH ARTICLE

List edge and list total coloring of 1-planar graphs

Author information +
History +

Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that each 1-planar graph with maximum degree Δ is (Δ+1)-edge-choosable and (Δ+2)- total-choosable if Δ≥16, and is Δ-edge-choosable and (Δ+1)-total-choosable if Δ≥21. The second conclusion confirms the list coloring conjecture for the class of 1-planar graphs with large maximum degree.

Keywords

1-planar graph / list coloring conjecture / discharging

Cite this article

Download citation ▾
Xin ZHANG, Jianliang WU, Guizhen LIU. List edge and list total coloring of 1-planar graphs. Front Math Chin, 2012, 7(5): 1005‒1018 https://doi.org/10.1007/s11464-012-0184-7

References

[1]
Albertson M O, Mohar B. Coloring vertices and faces of locally planar graphs. Graphs Combin, 2006, 22: 289-295
CrossRef Google scholar
[2]
Bondy J A, Murty U S R. Graph Theory with Applications. New York: North-Holland, 1976
[3]
Borodin O V. Solution of Ringel's problems on the vertex-face coloring of plane graphs and on the coloring of 1-planar graphs. Diskret Analiz, 1984, 41: 12-26 (in Russian)
[4]
Borodin O V. An extension of Kotzig theorem and the list edge coloring of planar graphs. Mat Zametki, 1990, 48: 22-48 (in Russian)
[5]
Borodin O V. A new proof of the 6 color theorem. J Graph Theory, 1995, 19(4): 507-521
CrossRef Google scholar
[6]
Borodin O V, Dmitriev I G, Ivanova A O. The height of a 4-cycle in triangle-free 1-planar graphs with minimum degree 5. J Appl Ind Math, 2009, 3(1): 28-31
CrossRef Google scholar
[7]
Borodin O V, Kostochka A V, Raspaud A, Sopena E. Acyclic colouring of 1-planar graphs. Discrete Appl Math, 2001, 114: 29-41
CrossRef Google scholar
[8]
Borodin O V, Kostochka A V, Woodall D R. List edge and list total colourings of multigraphs. J Combin Theory Ser B, 1997, 71: 184-204
CrossRef Google scholar
[9]
Fabrici I, Madaras T. The structure of 1-planar graphs. Discrete Math, 2007, 307: 854-865
CrossRef Google scholar
[10]
Harris A J. Problems and Conjectures in Extremal Graph Theory. <DissertationTip/>. Cambridge: Cambridge University, 1984
[11]
Hou J, Liu G, Wu J L. Some results on list total colorings of planar graphs. Lecture Notes in Computer Science, 2007, 4489: 320-328
CrossRef Google scholar
[12]
Hudák D, Madaras T. On local structures of 1-planar graphs of minimum degree 5 and girth 4. Discuss Math Graph Theory, 2009, 29: 385-400
CrossRef Google scholar
[13]
Jensen T R, Toft B. Graph Coloring Problems. New York: John Wiley & Sons, 1995
[14]
Juvan M, Mohar B, Škrekovski R. List total colorings of graphs. Combin Probab Comput, 1998, 7: 181-188
CrossRef Google scholar
[15]
Juvan M, Mohar B, Škrekovski R. Graphs of degree 4 are 5-edge-choosable. J Graph Theory, 1999, 32: 250-262
CrossRef Google scholar
[16]
Ringel G. Ein sechsfarbenproblem auf der Kugel. Abh Math Sem Hamburg Univ, 1965, 29: 107-117
CrossRef Google scholar
[17]
Suzuki Y. Optimal 1-planar graphs which triangulate other surfaces. Discrete Math, 2010, 310: 6-11
CrossRef Google scholar
[18]
Wang W, Lih K W. Choosability, edge choosability and total choosability of outerplanar graphs. Eur J Combin, 2001, 22: 71-78
CrossRef Google scholar
[19]
Wang W, Lih K W. Coupled choosability of plane graphs. J Graph Theory, 2008, 58: 27-44
CrossRef Google scholar
[20]
Wu J L, Wang P. List-edge and list-total colorings of graphs embedded on hyperbolic surfaces. Discrete Math, 2008, 308: 6210-6215
CrossRef Google scholar
[21]
Zhang X, Liu G. On edge colorings of 1-planar graphs without adjacent triangles. Inform Process Lett, 2012, 112(4): 138-142
CrossRef Google scholar
[22]
Zhang X, Liu G. On edge colorings of 1-planar graphs without chordal 5-cycles. Ars Combin, 2012, 104 (in press)
[23]
Zhang X, Liu G, Wu J L. Edge coloring of triangle-free 1-planar graphs. J Shandong Univ (Nat Sci), 2010, 45(6): 15-17 (in Chinese)
[24]
Zhang X, Liu G, Wu J L. Structural properties of 1-planar graphs and an application to acyclic edge coloring. Sci Sin Math, 2010, 40: 1025-1032 (in Chinese)
[25]
Zhang X, Liu G, Wu J L. On the linear arboricity of 1-planar graphs. OR Trans, 2011, 15(3): 38-44
[26]
Zhang X, Liu G, Wu J L. Light subgraphs in the family of 1-planar graphs with high minimum degree. Acta Math Sin (Engl Ser),
CrossRef Google scholar
[27]
Zhang X, Wu J L. On edge colorings of 1-planar graphs. Inform Process Lett, 2011, 111(3): 124-128
[28]
Zhang X, Wu J L, Liu G. New upper bounds for the heights of some light subgraphs in 1-planar graphs with high minimum degree. Discrete Math Theor Comput Sci, 2011, 13(3): 9-16
[29]
Zhang X, Yu Y, Liu G. On (p, 1)-total labelling of 1-planar graphs. Cent Eur J Math, 2011, 9(6): 1424-1434

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(164 KB)

Accesses

Citations

Detail

Sections
Recommended

/