Splitting positive definite mixed element method for viscoelasticity wave equation

Yang Liu , Hong Li , Wei Gao , Siriguleng He , Jinfeng Wang

Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 725 -742.

PDF (463KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (4) : 725 -742. DOI: 10.1007/s11464-012-0183-8
Research Article
RESEARCH ARTICLE

Splitting positive definite mixed element method for viscoelasticity wave equation

Author information +
History +
PDF (463KB)

Abstract

A splitting positive definite mixed finite element method is proposed for second-order viscoelasticity wave equation. The proposed procedure can be split into three independent symmetric positive definite integro-differential sub-system and does not need to solve a coupled system of equations. Error estimates are derived for both semidiscrete and fully discrete schemes. The existence and uniqueness for semidiscrete scheme are proved. Finally, a numerical example is provided to illustrate the efficiency of the method.

Keywords

Viscoelasticity wave equation / transformation / splitting positive definite system / mixed finite element method / error estimate

Cite this article

Download citation ▾
Yang Liu, Hong Li, Wei Gao, Siriguleng He, Jinfeng Wang. Splitting positive definite mixed element method for viscoelasticity wave equation. Front. Math. China, 2012, 7(4): 725-742 DOI:10.1007/s11464-012-0183-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R. A. Sobolev Spaces, 1975, New York: Academic

[2]

Brezzi F., Douglas J. Jr, Fortin M., Marini L. D. Efficient rectangular mixed finite elements in two and three space variables. RAIRO Modèl Math Anal Numér, 1987, 21: 581-604

[3]

Brezzi F., Douglas J. Jr, Marini L. D. Two families of mixed finite elements for second order elliptic problems. Numer Math, 1985, 47: 217-235

[4]

Chen Y. P., Huang Y. Q. The superconvergence of mixed finite element methods for nonlinear hyperbolic equations. Commun Nonlinear Sci Numer Simul, 1998, 3(3): 155-158

[5]

Chen Z. X. Finite Element Methods and Their Applications, 2005, Berlin: Springer-Verlag

[6]

Chen Z. X. Implementation of mixed methods as finite difference methods and applications to nonisothermal multiphase flow in porous media. J Comput Math, 2006, 24(3): 281-294

[7]

Ciarlet P. G. The Finite Element Methods for Elliptic Problems, 1978, New York: North-Holland

[8]

Douglas J. Jr, Ewing R., Wheeler M. F. The approximation of the pressure by a mixed method in the simulation of miscible displacement. RARIO Anal Numer, 1983, 17: 17-33

[9]

Ewing R. E., Lin Y. P., Wang J. P., Zhang S. H. L-error estimates and superconvergence in maximum norm of mixed finite element methods for nonfickian flows in porous media. Internat J Numer Anal Model, 2005, 2(3): 301-328

[10]

Gao L. P., Liang D., Zhang B. Error estimates for mixed finite element approximations of the viscoelasticity wave equation. Math Methods Appl Sci, 2004, 27: 1997-2016

[11]

Guo H., Rui H. X. Least-squares Galerkin procedures for pseudo-hyperbolic equations. Appl Math Comput, 2007, 189: 425-439

[12]

Jiang Z. W., Chen H. Z. Errors estimates for mixed finite element methods for Sobolev equation. Northeast Math J, 2001, 17(3): 301-314

[13]

Johnson C., Thomée V. Error estimates for some mixed finite element methods for parabolic problems. RARIO Anal Numer, 1981, 15: 41-78

[14]

Li H. R., Luo Z. D., Li Q. Generalized difference methods and numerical simulation for two-dimensional viscoelastic problems. Math Numer Sin, 2007, 29(3): 257-262

[15]

Li J. C. Multiblock mixed finite element methods for singularly perturbed problems. Appl Numer Math, 2000, 35: 157-175

[16]

Liu Y., Li H. H1-Galerkin mixed finite element methods for pseudo-hyperbolic equations. Appl Math Comput, 2009, 212: 446-457

[17]

Liu Y., Li H., He S. Mixed time discontinuous space-time finite element method for convection diffusion equations. Appl Math Mech, 2008, 29(12): 1579-1586

[18]

Luo Z. D. Theory Bases and Applications of Finite Element Mixed Methods, 2006, Beijing: Science Press

[19]

Pani A. K., Yuan J. Y. Mixed finite element methods for a strongly damped wave equation. Numer Methods Partial Differential Equations, 2001, 17: 105-119

[20]

Raviart P. A., Thomas J. M. A mixed finite element methods for second order elliptic problems. Mathematical Aspects of Finite Element Methods, 1977, Berlin: Springer, 292-315

[21]

Shi Y. H., Shi D. Y. Superconvergence analysis and extrapolation of ACM finite element methods for viscoelasticity equation. Math Appl, 2009, 22(3): 534-541

[22]

Yang D. P. A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media. Numer Methods Partial Differential Equations, 2001, 17: 229-249

[23]

Zhang J. S., Yang D. P. A splitting positive definite mixed element method for second-order hyperbolic equations. Numer Methods Partial Differential Equations, 2009, 25: 622-636

AI Summary AI Mindmap
PDF (463KB)

918

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/