Bijective maps on standard Borel subgroup of symplectic group preserving commutators

Shikun OU

PDF(168 KB)
PDF(168 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 497-512. DOI: 10.1007/s11464-012-0181-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Bijective maps on standard Borel subgroup of symplectic group preserving commutators

Author information +
History +

Abstract

Let F be a field, and let G be the standard Borel subgroup of the symplectic group Sp(2m, F). In this paper, we characterize the bijective maps ϕ:GG satisfying ϕ[x,y]=[ϕ(x),ϕ(y)].

Keywords

Preserver map / map preserver commutators / matrix group

Cite this article

Download citation ▾
Shikun OU. Bijective maps on standard Borel subgroup of symplectic group preserving commutators. Front Math Chin, 2012, 7(3): 497‒512 https://doi.org/10.1007/s11464-012-0181-x

References

[1]
Cao Youan. Automorphisms of Borel groups over connected rings. Chin Sci Bull, 1996, 41(15): 1318
[2]
Hua L G, Wan Z X. Classical Groups. Shanghai: Shanghai Scientific and Technical Publishers, 1963 (in Chinese)
[3]
Liu S, Wang L. Homomorphisms between symplectic groups. Chin Ann Math Ser B, 1993, 14(3): 287-296
[4]
Ou S, Wang D. Automorphisms of the Borel subgroups of symplectic group over commutative rings. J Group Theory, 2008, 11(2): 235-245
CrossRef Google scholar
[5]
Queen L, Donald B. Automorphisms of the symplectic group over a local ring. J Algebra, 1974, 30(1-3): 485-495
CrossRef Google scholar
[6]
Wang D, Ou S, Zhang W. Bijective maps preserving commutators on a solvable classical group. Sci China Math, 2010, 53(7): 1723-1730
CrossRef Google scholar
[7]
Wang D, Yu Q, Zhao Y X. Automorphisms of the standard Borel subgroup of orthogonal group O(2m,R) over commutative rings. J Algebra, 2007, 317: 534-543
CrossRef Google scholar
[8]
You H, Liu C. Automorphisms of a class of solvable groups. Chin Sci Bull, 1988, 33(9): 645-648
[9]
Zhang X, Cao C G. Homomorphisms from orthogonal group to general linear group over the real number field. Acta Math Sin, 2002, 45(3): 461-468 (in Chinese)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(168 KB)

Accesses

Citations

Detail

Sections
Recommended

/