Bijective maps on standard Borel subgroup of symplectic group preserving commutators

Shikun Ou

Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 497 -512.

PDF (168KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 497 -512. DOI: 10.1007/s11464-012-0181-x
Research Article
RESEARCH ARTICLE

Bijective maps on standard Borel subgroup of symplectic group preserving commutators

Author information +
History +
PDF (168KB)

Abstract

Let F be a field, and let$\mathbb{G}$ be the standard Borel subgroup of the symplectic group Sp(2m, F). In this paper, we characterize the bijective maps ϕ: $\mathbb{G}$ → $\mathbb{G}$ satisfying ϕ[x, y] = [ϕ(x), ϕ(y)].

Keywords

Preserver map / map preserver commutators / matrix group

Cite this article

Download citation ▾
Shikun Ou. Bijective maps on standard Borel subgroup of symplectic group preserving commutators. Front. Math. China, 2012, 7(3): 497-512 DOI:10.1007/s11464-012-0181-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao Youan. Automorphisms of Borel groups over connected rings. Chin Sci Bull, 1996, 41(15): 1318

[2]

Hua L. G., Wan Z. X. Classical Groups, 1963, Shanghai: Shanghai Scientific and Technical Publishers

[3]

Liu S., Wang L. Homomorphisms between symplectic groups. Chin Ann Math Ser B, 1993, 14(3): 287-296

[4]

Ou S., Wang D. Automorphisms of the Borel subgroups of symplectic group over commutative rings. J Group Theory, 2008, 11(2): 235-245

[5]

Queen L., Donald B. Automorphisms of the symplectic group over a local ring. J Algebra, 1974, 30(1–3): 485-495

[6]

Wang D., Ou S., Zhang W. Bijective maps preserving commutators on a solvable classical group. Sci China Math, 2010, 53(7): 1723-1730

[7]

Wang D., Yu Q., Zhao Y. X. Automorphisms of the standard Borel subgroup of orthogonal group O(2m,R) over commutative rings. J Algebra, 2007, 317: 534-543

[8]

You H., Liu C. Automorphisms of a class of solvable groups. Chin Sci Bull, 1988, 33(9): 645-648

[9]

Zhang X., Cao C. G. Homomorphisms from orthogonal group to general linear group over the real number field. Acta Math Sin, 2002, 45(3): 461-468

AI Summary AI Mindmap
PDF (168KB)

830

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/