Classification of multiple unilateral weighted shifts by $\mathbb{A}_{\aleph _0 }$

Juexian Li

Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 487 -496.

PDF (148KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 487 -496. DOI: 10.1007/s11464-012-0180-y
Research Article
RESEARCH ARTICLE

Classification of multiple unilateral weighted shifts by $\mathbb{A}_{\aleph _0 }$

Author information +
History +
PDF (148KB)

Abstract

In this paper, it is characterized when a multiple unilateral weighted shift belongs to the classes $\mathbb{A}_n \left( {1 \leqslant n \leqslant \aleph _0 } \right)$. As a result, we perfect and generalize the previous conclusions given by H. Bercovici, C. Foias, and C. Pearcy. Moreover, we remark that Question 21 posed by Shields has been negatively answered.

Keywords

Multiple unilateral weighted shifts / classes $\mathbb{A}_n$

Cite this article

Download citation ▾
Juexian Li. Classification of multiple unilateral weighted shifts by $\mathbb{A}_{\aleph _0 }$. Front. Math. China, 2012, 7(3): 487-496 DOI:10.1007/s11464-012-0180-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bercovici H. A contribution to the structure theory of operators in the class A. J Funct Anal, 1988, 78: 197-207

[2]

Bercovici H. Factorization theorem and the structure of operators on Hilbert space. Ann Math, 1988, 128: 399-413

[3]

Bercovici H., Foias C., Pearcy C. Dilation theory and systems of simultaneous equations in the predual of an operator algebra I. Michigan Math J, 1983, 30: 335-354

[4]

Bercovici H., Foias C., Pearcy C. Dual Algebras with Applications to Invariant Subspaces and Dilation Theory. CBMS Regional Conference Ser in Math, No 56, 1985, Providence: Amer Math Soc

[5]

Chevreau B. Sur les contractions à calcul fonctionnel isométrique. J Operator Theory, 1988, 20: 269-293

[6]

Halmos P. R. A Hilbert Space Problem Book, 1982 2nd ed. Berlin-New York: Springer-Verlag

[7]

Herrero D. A. The Fredholm structure of on n-multicyclic operators. Indiana Univ Math J, 1987, 36: 549-566

[8]

F., Liu L. F. The characterizations of shift operators being universal dilations. Science in China, Ser A, 1992, 35: 1017-1025

[9]

Makai E., Zemánek J. The surjectivity radius, packing numbers and boundedness below of linear operators. Integral Equations Operator Theory, 1983, 6: 372-384

[10]

Shields A. L. Weighted shift operators and analytic function theory. Topics in Operator Theory, Math Surveys, Vol 13, 1974, Providence: Amer Math Soc, 49-128

[11]

Sz.-Nagy B., Foias C. Harmonic Analysis of Operators on Hilbert Space, 1970, Amsterdam: North-Holland

AI Summary AI Mindmap
PDF (148KB)

661

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/