Poisson structures on basic cycles

Yanhong BAO, Xianneng DU, Yu YE

PDF(167 KB)
PDF(167 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 385-396. DOI: 10.1007/s11464-012-0174-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Poisson structures on basic cycles

Author information +
History +

Abstract

The Poisson structures on a basic cycle are determined completely via quiver techniques. As a consequence, all Poisson structures on basic cycles are inner.

Keywords

Poisson algebra / inner Poisson structure / basic cycle

Cite this article

Download citation ▾
Yanhong BAO, Xianneng DU, Yu YE. Poisson structures on basic cycles. Front Math Chin, 2012, 7(3): 385‒396 https://doi.org/10.1007/s11464-012-0174-9

References

[1]
Assem I, Simson D, Skowronski A. Elements of the Representations Theory of Associative Algebras. London Math Soc Stud Texts, 65. Cambridge: Cambridge University Press, 2005
[2]
Auslander M, Reiten I, Smalϕ S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, 36. Cambridge: Cambridge University Press, 1995
CrossRef Google scholar
[3]
Casasa J M, Datuashvilib T. Noncommutative Leibniz-Poisson algebras. Commun Algebra, 2006, 34: 2507-2530
CrossRef Google scholar
[4]
Crawley-Boevey W. Poisson structures on moduli spaces of representations. J Algebra, 2011, 325: 205-215
CrossRef Google scholar
[5]
Flato M, Gerstenhaber M, Voronow A A. Cohomology and deformation of Leibniz pairs. Lett Math Phys, 1995, 34: 77-90
CrossRef Google scholar
[6]
Farkas D, Letzter G. Ring theory from symplectic geometry. J Pure Appl Algebra, 1998, 125: 155-190
CrossRef Google scholar
[7]
Kubo F. Finite-dimensional non-commutative Poisson algebras. J Pure Appl Algebra, 1996, 113: 307-314
CrossRef Google scholar
[8]
Kubo F. Non-commutative Poisson algebra structures on affine Kac-Moody algebras. J Pure Appl Algebra, 1998, 126: 267-286
CrossRef Google scholar
[9]
Van den Bergh M. Double Poisson algebras. Trans Amer Math Soc, 2008, 360: 5711-5769
CrossRef Google scholar
[10]
Xu P. Noncommutative Poisson algebras. Amer J Math, 1994, 116(1): 101-125
CrossRef Google scholar
[11]
Yao Y, Ye Y, Zhang P. Quiver Poisson algebras. J Algebra, 2007, 312: 570-589
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(167 KB)

Accesses

Citations

Detail

Sections
Recommended

/