Poisson structures on basic cycles
Yanhong BAO, Xianneng DU, Yu YE
Poisson structures on basic cycles
The Poisson structures on a basic cycle are determined completely via quiver techniques. As a consequence, all Poisson structures on basic cycles are inner.
Poisson algebra / inner Poisson structure / basic cycle
[1] |
Assem I, Simson D, Skowronski A. Elements of the Representations Theory of Associative Algebras. London Math Soc Stud Texts, 65. Cambridge: Cambridge University Press, 2005
|
[2] |
Auslander M, Reiten I, Smalϕ S O. Representation Theory of Artin Algebras. Cambridge Stud Adv Math, 36. Cambridge: Cambridge University Press, 1995
CrossRef
Google scholar
|
[3] |
Casasa J M, Datuashvilib T. Noncommutative Leibniz-Poisson algebras. Commun Algebra, 2006, 34: 2507-2530
CrossRef
Google scholar
|
[4] |
Crawley-Boevey W. Poisson structures on moduli spaces of representations. J Algebra, 2011, 325: 205-215
CrossRef
Google scholar
|
[5] |
Flato M, Gerstenhaber M, Voronow A A. Cohomology and deformation of Leibniz pairs. Lett Math Phys, 1995, 34: 77-90
CrossRef
Google scholar
|
[6] |
Farkas D, Letzter G. Ring theory from symplectic geometry. J Pure Appl Algebra, 1998, 125: 155-190
CrossRef
Google scholar
|
[7] |
Kubo F. Finite-dimensional non-commutative Poisson algebras. J Pure Appl Algebra, 1996, 113: 307-314
CrossRef
Google scholar
|
[8] |
Kubo F. Non-commutative Poisson algebra structures on affine Kac-Moody algebras. J Pure Appl Algebra, 1998, 126: 267-286
CrossRef
Google scholar
|
[9] |
Van den Bergh M. Double Poisson algebras. Trans Amer Math Soc, 2008, 360: 5711-5769
CrossRef
Google scholar
|
[10] |
Xu P. Noncommutative Poisson algebras. Amer J Math, 1994, 116(1): 101-125
CrossRef
Google scholar
|
[11] |
Yao Y, Ye Y, Zhang P. Quiver Poisson algebras. J Algebra, 2007, 312: 570-589
CrossRef
Google scholar
|
/
〈 | 〉 |