A simple existence proof of Schubart periodic orbit with arbitrary masses

Duokui YAN

Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 145-160.

PDF(182 KB)
PDF(182 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 145-160. DOI: 10.1007/s11464-012-0171-z
RESEARCH ARTICLE
RESEARCH ARTICLE

A simple existence proof of Schubart periodic orbit with arbitrary masses

Author information +
History +

Abstract

This paper gives an analytic existence proof of the Schubart periodic orbit with arbitrary masses, a periodic orbit with singularities in the collinear three-body problem. A “turning point” technique is introduced to exclude the possibility of extra collisions and the existence of this orbit follows by a continuity argument on differential equations generated by the regularized Hamiltonian.

Keywords

Celestial mechanics / Schubart periodic orbit / three-body problem / binary collision / periodic solution with singularity / regularization

Cite this article

Download citation ▾
Duokui YAN. A simple existence proof of Schubart periodic orbit with arbitrary masses. Front Math Chin, 2012, 7(1): 145‒160 https://doi.org/10.1007/s11464-012-0171-z

References

[1]
Aarseth S J, Zare K. A regularization of the three-body problem. Celest Mech, 1974, 10: 185-205
CrossRef Google scholar
[2]
Bakker L, Ouyang T, Roberts G, Yan D, Simmons S. Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem. Celestial Mech Dynam Astronom, 2010, 108: 147-164
CrossRef Google scholar
[3]
Bakker L, Ouyang T, Yan D, Simmons S. Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric fourbody problem. Celestial Mech Dynam Astronom, 2011, 110: 271-290
CrossRef Google scholar
[4]
Chenciner A, Montgomery R. A remarkable periodic solution of the three-body problem in the case of equal masses. Ann of Math, 2000, 152: 881-901
CrossRef Google scholar
[5]
Conley C. The retrograde circular solutions of the restricted three-body problem via a submanifold convex to the flow. SIAM J Appl Math, 1968, 16: 620-625
CrossRef Google scholar
[6]
Hénon M. Stability and interplay motions. Celestial Mech Dynam Astronom, 1997, 15: 243-261
[7]
Hietarinta J, Mikkola S. Chaos in the one-dimensional gravitational three-body problem. Chaos, 1993, 3: 183-203
CrossRef Google scholar
[8]
Hu X, Sun S. Index and stability of symmetric periodic orbits in Hamiltonian system with application to figure-eight orbit. Commun Math Phys, 2009, 290: 737-777
CrossRef Google scholar
[9]
Hu X, Sun S. Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem. Adv Math, 2010, 223: 98-119
CrossRef Google scholar
[10]
Long Y. Index Theory for Symplectic Paths with Applications. Basel-Boston-Berlin: Birkhäuser Verlag, 2002
CrossRef Google scholar
[11]
Moeckel R. A topological existence proof for the Schubart orbits in the collinear threebody problem. Discrete Contin Dyn Syst Ser B, 2008, 10: 609-620
CrossRef Google scholar
[12]
Moore C. Braids in classical dynamics. Phys Rev Lett, 1993, 70: 3675-3679
CrossRef Google scholar
[13]
Ouyang T, Simmons S, Yan D. Periodic solutions with singularities in two dimensions in the n-body problem. Rocky Mountain J of Math (to appear)
[14]
Ouyang T, Yan D. Periodic solutions with alternating singularities in the collinear fourbody problem. Celestial Mech Dynam Astronom, 2011, 109: 229-239
CrossRef Google scholar
[15]
Roberts G. Linear stability of the elliptic Lagrangian triangle solutions in the threebody problem. J Differential Equations, 2002, 182: 191-218
CrossRef Google scholar
[16]
Roberts G. Linear stability analysis of the figure-eight orbit in the three-body problem. Ergodic Theory Dynam Systems, 2007, 27: 1947-1963
CrossRef Google scholar
[17]
Schubart J. Numerische aufsuchung periodischer lösungen im dreikörperproblem. Astron Narchr, 1956, 283: 17-22
CrossRef Google scholar
[18]
Shibayama M. Minimizing periodic orbits with regularizable collisions in the n-body problem. Arch Ration Mech Anal, 2011, 199: 821-841
CrossRef Google scholar
[19]
Venturelli A. A variational proof for the existence of Von Schubart’s orbit. Discrete Contin Dyn Syst Ser B, 10: 699-717

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(182 KB)

Accesses

Citations

Detail

Sections
Recommended

/