Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind

Xianjuan Li, Tao Tang

Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 69-84.

PDF(219 KB)
Front. Math. China All Journals
PDF(219 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 69-84. DOI: 10.1007/s11464-012-0170-0
Research Article
RESEARCH ARTICLE

Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind

Author information +
History +

Abstract

This work is to analyze a spectral Jacobi-collocation approximation for Volterra integral equations with singular kernel ϕ(t, s) = (t − s)−µ. In an earlier work of Y. Chen and T. Tang [J. Comput. Appl. Math., 2009, 233: 938–950], the error analysis for this approach is carried out for 0 < µ < 1/2 under the assumption that the underlying solution is smooth. It is noted that there is a technical problem to extend the result to the case of Abel-type, i.e., µ = 1/2. In this work, we will not only extend the convergence analysis by Chen and Tang to the Abel-type but also establish the error estimates under a more general regularity assumption on the exact solution.

Keywords

Jacobi spectral collocation method / Abel-Volterra integral equation / convergence analysis

Cite this article

Download citation ▾
Xianjuan Li, Tao Tang. Convergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kind. Front. Math. China, 2012, 7(1): 69‒84 https://doi.org/10.1007/s11464-012-0170-0
This is a preview of subscription content, contact us for subscripton.

References

[1.]
Ali I., Brunner H., Tang T. A spectral method for pantograph-type delay differential equations and its convergence analysis. J Comput Math, 2009, 27: 254-265
[2.]
Ali I., Brunner H., Tang T. Spectral methods for pantograph-type differential and integral equations with multiple delays. Front Math China, 2009, 4(1): 49-61
CrossRef Google scholar
[3.]
Brunner H. Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J Numer Anal, 1986, 6: 221-239
CrossRef Google scholar
[4.]
Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations Methods, 2004, Cambridge: Cambridge University Press
CrossRef Google scholar
[5.]
Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A. Spectral Methods Fundamentals in Single Domains, 2006, Berlin: Springer-Verlag
[6.]
Chen Y., Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions. J Comput Appl Math, 2009, 233: 938-950
CrossRef Google scholar
[7.]
Chen Y., Tang T. Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math Comp, 2010, 79: 147-167
CrossRef Google scholar
[8.]
Diogo T., McKee S., Tang T. Collocation methods for second-kind Volterra integral equations with weakly singular kernels. Proc Roy Soc Edinburgh Sext A, 1994, 124: 199-210
CrossRef Google scholar
[9.]
Gogatishvill A., Lang J. The generalized hardy operator with kernel and variable integral limits in Banach function spaces. J Inequal Appl, 1999, 4(1): 1-16
[10.]
Graham I. G., Sloan I. H. Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ℝ3. Numer Math, 2002, 92: 289-323
CrossRef Google scholar
[11.]
Hesthaven J. S. From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J Numer Anal, 1998, 35: 655-676
CrossRef Google scholar
[12.]
Kufner A., Persson L. E. Weighted Inequalities of Hardy Type, 2003, New York: World Scientific
[13.]
Lubich Ch. Fractional linear multi-step methods for Abel-Volterra integral equations of the second kind. Math Comp, 1985, 45: 463-469
CrossRef Google scholar
[14.]
Mastroianni G., Occorsio D. Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey. J Comput Appl Math, 2001, 134: 325-341
CrossRef Google scholar
[15.]
Nevai P. Mean convergence of Lagrange interpolation. III. Trans Amer Math Soc, 1984, 282: 669-698
CrossRef Google scholar
[16.]
Quarteroni A., Valli A. Numerical Approximation of Partial Differential Equations, 1997, Berlin: Springer-Verlag
[17.]
Ragozin D. L. Polynomial approximation on compact manifolds and homogeneous spaces. Trans Amer Math Soc, 1970, 150: 41-53
CrossRef Google scholar
[18.]
Ragozin D. L. Constructive polynomial approximation on spheres and projective spaces. Trans Amer Math Soc, 1971, 162: 157-170
[19.]
Samko S. G., Cardoso R. P. Sonine integral equations of the first kind in Lp(0, b). Fract Calc & Appl Anal, 2003, 6: 235-258
[20.]
Shen J., Tang T. Spectral and High-Order Methods with Applications, 2006, Beijing: Science Press
[21.]
Shen J., Tang T., Wang L. -L. Spectral Methods: Algorithms, Analysis and Applications, 2011, Berlin: Springer
[22.]
Tang T. Superconvergence of numerical solutions to weakly singular Volterra integrodifferential equations. Numer Math, 1992, 61: 373-382
CrossRef Google scholar
[23.]
Tang T. A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J Numer Anal, 1993, 13: 93-99
CrossRef Google scholar
[24.]
Tang T., Xu X., Cheng J. On spectral methods for Volterra type integral equations and the convergence analysis. J Comput Math, 2008, 26: 825-837
[25.]
Wan Z., Chen Y., Huang Y. Legendre spectral Galerkin methods for second-kind Volterra integral equations. Front Math China, 2009, 4(1): 181-193
CrossRef Google scholar
AI Summary AI Mindmap
PDF(219 KB)

1305

Accesses

45

Citations

Detail

Sections
Recommended

/