Complete noncompact manifolds with harmonic curvature

Yawei Chu

Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 19-27.

PDF(128 KB)
PDF(128 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 19-27. DOI: 10.1007/s11464-012-0168-7
Research Article
RESEARCH ARTICLE

Complete noncompact manifolds with harmonic curvature

Author information +
History +

Abstract

Let (Mn, g) be an n-dimensional complete noncompact Riemannian manifold with harmonic curvature and positive Sobolev constant. In this paper, by employing an elliptic estimation method, we show that (Mn, g) is a space form if it has sufficiently small Ln/2-norms of trace-free curvature tensor and nonnegative scalar curvature. Moreover, we get a gap theorem for (Mn, g) with positive scalar curvature.

Keywords

Harmonic curvature / trace-free curvature tensor / space form

Cite this article

Download citation ▾
Yawei Chu. Complete noncompact manifolds with harmonic curvature. Front. Math. China, 2012, 7(1): 19‒27 https://doi.org/10.1007/s11464-012-0168-7

References

[1.]
Baikoussis C., Koufogiorgos T. On a type of contact manifolds. J Geom, 1993, 46: 1-9
CrossRef Google scholar
[2.]
Besse A. L. Einstein Manifolds, 1987, Berlin: Springer-Verlag, 434-435
[3.]
Bourguignon J. P. Knill R. J., Kalka M., Sealey H. C. J. Harmonic curvature for gravitational and Yang-Mills fields. Harmonic Maps, 1982, Berlin: Springer-Verlag, 35-47
CrossRef Google scholar
[4.]
Chu Y. W. A rigidity theorem for complete noncompact Bach-flat manifolds. J Geom Phys, 2011, 61: 516-521
CrossRef Google scholar
[5.]
Delanoe P. Generalized stereographic projections with prescribed scalar curvature. Geometry and Nonlinear Partial Differential Equations, 1992, Providence: Amer Math Soc, 17-25
[6.]
Hamilton R. Three-manifolds with positive Ricci curvature. J Differential Geom, 1982, 17: 255-306
[7.]
Hebey E., Vaugon M. Effective Lp pinching for the concircular curvature. J Geom Anal, 1996, 6: 531-553
CrossRef Google scholar
[8.]
Huisken G. Ricci deformation of the metric on a Riemannian manifold. J Differential Geom, 1985, 21: 47-62
[9.]
Kim S. Rigidity of noncompact complete manifolds with harmonic curvature. Manuscripta Math, 2011, 135: 107-116
CrossRef Google scholar
[10.]
Kwon J. H., Nakagawa H. A note on real hypersurfaces of a complex projective space. J Austral Math Soc (Ser A), 1989, 47: 108-113
CrossRef Google scholar
[11.]
Pérez J. D., Santos F. G. On real hypersurfaces with harmonic curvature of a quaternionic projective space. J Geom, 1991, 40: 165-169
CrossRef Google scholar
[12.]
Schoen R. Conformal deformation of a Riemannian metric to constant scalar curvature. J Differential Geom, 1984, 20: 479-495
[13.]
Schoen R., Yau S. T. Conformally flat manifolds, Kleinian groups and scalar curvature. Invent Math, 1988, 92: 47-71
CrossRef Google scholar
[14.]
Streets J. Asymptotic curvature decay and removal of singularities of Bach-flat metrics. Trans Amer Math Soc, 2010, 362: 1301-1324
CrossRef Google scholar
[15.]
Tian G., Viaclovsky J. Bach-flat asymptotically locally Euclidean metrics. InventMath, 2005, 160: 357-415
CrossRef Google scholar
[16.]
Trudinger N. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann Sc Norm Super Pisa, 1968, 22: 265-274
[17.]
Yamabe H. On a deformation of Riemannian structures on compact manifolds. Osaka Math J, 1960, 12: 21-37
AI Summary AI Mindmap
PDF(128 KB)

Accesses

Citations

Detail

Sections
Recommended

/