Estimates for multilinear singular integral operators with nonsmooth kernels
Guoen HU, Yan MENG
Estimates for multilinear singular integral operators with nonsmooth kernels
Let (X, d, μ) be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we consider the behavior on Lp1(X) × · · · × Lpm(X) for the m-linear singular integral operators with nonsmooth kernels which were first introduced by Duong, Grafakos and Yan.
Approximation to the identity / multilinear singular integral operator / nonsmooth kernel
[1] |
Coifman R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315-331
CrossRef
Google scholar
|
[2] |
Coifman R, Meyer Y. Nonlinear harmonic analysis, operator theory and PDE. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 3-45
|
[3] |
Coifman R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes, Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
|
[4] |
Duong X, Gong R, Grafakos L, Li J, Yan L. Maximal operators for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517-2542
CrossRef
Google scholar
|
[5] |
Duong X, Grafakos L, Yan L. Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans Amer Math Soc, 2010, 362: 2089-2113
CrossRef
Google scholar
|
[6] |
Duong X, McIntosh A. Singular integral operators with non-smooth kernels on irregular domains. Rev Mat Iberoamericana, 1999, 15: 233-265
CrossRef
Google scholar
|
[7] |
Grafakos L. Classical Fourier Analysis. 2nd Ed. Graduate Texts in Mathematics, Vol 249. New York: Springer, 2008
|
[8] |
Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv in Math, 2002, 165: 124-164
CrossRef
Google scholar
|
[9] |
Grafakos L, Torres R H. On multilinear singular integrals of Calderón-Zygmund type. Publ Mat, 2002, Extra: 57-91
|
[10] |
Han Y, Müller D, Yang D. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr and Appl Anal, Art ID 893409, 2008
|
[11] |
Hu G, Yang D. Weighted estimates for singular integral operators with nonsmooth kernels and applications. J Aust Math Soc, 2008, 85: 377-417
CrossRef
Google scholar
|
[12] |
Macías R, Segovia C. Lipschitz functions on spaces of homogeneous type. Adv in Math, 1979, 33257-279
CrossRef
Google scholar
|
[13] |
Martell J M. Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia Math, 2004, 161: 113-145
CrossRef
Google scholar
|
[14] |
Zafran M. A multilinear interpolation theorem. Studia Math, 1978, 62: 107-124
|
/
〈 | 〉 |