Estimates for multilinear singular integral operators with nonsmooth kernels

Guoen Hu , Yan Meng

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 51 -67.

PDF (203KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 51 -67. DOI: 10.1007/s11464-011-0169-y
Research Article
RESEARCH ARTICLE

Estimates for multilinear singular integral operators with nonsmooth kernels

Author information +
History +
PDF (203KB)

Abstract

Let ([inline-graphic not available: see fulltext], d, μ) be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we consider the behavior on [inline-graphic not available: see fulltext] × ⋯ × [inline-graphic not available: see fulltext] for the m-linear singular integral operators with nonsmooth kernels which were first introduced by Duong, Grafakos and Yan.

Keywords

Approximation to the identity / multilinear singular integral operator / nonsmooth kernel

Cite this article

Download citation ▾
Guoen Hu, Yan Meng. Estimates for multilinear singular integral operators with nonsmooth kernels. Front. Math. China, 2011, 7(1): 51-67 DOI:10.1007/s11464-011-0169-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coifman R., Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315-331

[2]

Coifman R., Meyer Y. Nonlinear harmonic analysis, operator theory and PDE. Beijing Lectures in Harmonic Analysis (Beijing, 1984), 1986, Princeton: Princeton Univ Press, 3-45

[3]

Coifman R., Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes, 1971, Berlin: Springer

[4]

Duong X., Gong R., Grafakos L., Li J., Yan L. Maximal operators for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517-2542

[5]

Duong X., Grafakos L., Yan L. Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans Amer Math Soc, 2010, 362: 2089-2113

[6]

Duong X., McIntosh A. Singular integral operators with non-smooth kernels on irregular domains. Rev Mat Iberoamericana, 1999, 15: 233-265

[7]

Grafakos L. Classical Fourier Analysis, 2008 2nd Ed New York: Springer

[8]

Grafakos L., Torres R. H. Multilinear Calderón-Zygmund theory. Adv in Math, 2002, 165: 124-164

[9]

Grafakos L, Torres R H. On multilinear singular integrals of Calderón-Zygmund type. Publ Mat, 2002, Extra: 57–91

[10]

Han Y, Müller D, Yang D. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr and Appl Anal, Art ID 893409, 2008

[11]

Hu G., Yang D. Weighted estimates for singular integral operators with nonsmooth kernels and applications. J Aust Math Soc, 2008, 85: 377-417

[12]

Macías R., Segovia C. Lipschitz functions on spaces of homogeneous type. Adv in Math, 1979, 33: 257-279

[13]

Martell J. M. Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia Math, 2004, 161: 113-145

[14]

Zafran M. A multilinear interpolation theorem. Studia Math, 1978, 62: 107-124

AI Summary AI Mindmap
PDF (203KB)

940

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/