Estimates for multilinear singular integral operators with nonsmooth kernels

Guoen HU, Yan MENG

PDF(203 KB)
PDF(203 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 51-67. DOI: 10.1007/s11464-011-0169-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Estimates for multilinear singular integral operators with nonsmooth kernels

Author information +
History +

Abstract

Let (X, d, μ) be a space of homogeneous type in the sense of Coifman and Weiss. In this paper, we consider the behavior on Lp1(X) × · · · × Lpm(X) for the m-linear singular integral operators with nonsmooth kernels which were first introduced by Duong, Grafakos and Yan.

Keywords

Approximation to the identity / multilinear singular integral operator / nonsmooth kernel

Cite this article

Download citation ▾
Guoen HU, Yan MENG. Estimates for multilinear singular integral operators with nonsmooth kernels. Front Math Chin, 2012, 7(1): 51‒67 https://doi.org/10.1007/s11464-011-0169-y

References

[1]
Coifman R, Meyer Y. On commutators of singular integrals and bilinear singular integrals. Trans Amer Math Soc, 1975, 212: 315-331
CrossRef Google scholar
[2]
Coifman R, Meyer Y. Nonlinear harmonic analysis, operator theory and PDE. In: Beijing Lectures in Harmonic Analysis (Beijing, 1984). Ann Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 3-45
[3]
Coifman R, Weiss G. Analyse Harmonique Non-commutative sur Certains Espaces Homogenes, Lecture Notes in Math, Vol 242. Berlin: Springer, 1971
[4]
Duong X, Gong R, Grafakos L, Li J, Yan L. Maximal operators for multilinear singular integrals with non-smooth kernels. Indiana Univ Math J, 2009, 58: 2517-2542
CrossRef Google scholar
[5]
Duong X, Grafakos L, Yan L. Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans Amer Math Soc, 2010, 362: 2089-2113
CrossRef Google scholar
[6]
Duong X, McIntosh A. Singular integral operators with non-smooth kernels on irregular domains. Rev Mat Iberoamericana, 1999, 15: 233-265
CrossRef Google scholar
[7]
Grafakos L. Classical Fourier Analysis. 2nd Ed. Graduate Texts in Mathematics, Vol 249. New York: Springer, 2008
[8]
Grafakos L, Torres R H. Multilinear Calderón-Zygmund theory. Adv in Math, 2002, 165: 124-164
CrossRef Google scholar
[9]
Grafakos L, Torres R H. On multilinear singular integrals of Calderón-Zygmund type. Publ Mat, 2002, Extra: 57-91
[10]
Han Y, Müller D, Yang D. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces. Abstr and Appl Anal, Art ID 893409, 2008
[11]
Hu G, Yang D. Weighted estimates for singular integral operators with nonsmooth kernels and applications. J Aust Math Soc, 2008, 85: 377-417
CrossRef Google scholar
[12]
Macías R, Segovia C. Lipschitz functions on spaces of homogeneous type. Adv in Math, 1979, 33257-279
CrossRef Google scholar
[13]
Martell J M. Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications. Studia Math, 2004, 161: 113-145
CrossRef Google scholar
[14]
Zafran M. A multilinear interpolation theorem. Studia Math, 1978, 62: 107-124

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(203 KB)

Accesses

Citations

Detail

Sections
Recommended

/