PDF
(237KB)
Abstract
Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any σ, π ∈ H, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m, p, n) is a coset of the stabilizer of a point in {1, …, n} provided n is sufficiently large.
Keywords
Erdős-Ko-Rado theorem
/
representation theory
/
imprimitive reflection groups
Cite this article
Download citation ▾
Li Wang.
Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups.
Front. Math. China, 2011, 7(1): 125-144 DOI:10.1007/s11464-011-0167-0
| [1] |
Ariki S. Representation theory of a Hecke algebra of G(r, p, n). J Algebra, 1995, 177: 164-185
|
| [2] |
Ariki S., Koike K. A Hecke algebra of (ℤ/rℤ)~ℒn and construction of its irreducible representations. Adv Math, 1994, 106: 216-243
|
| [3] |
Birkhoff G. Three observations on linear algebra. Univ Nac Tucumán Revista A, 1946, 5: 147-151
|
| [4] |
Cameron P. J., Ku C. Y. Intersecting families of permutations. European J Combin, 2003, 24(7): 881-890
|
| [5] |
Deza M., Frankl P. On the maximum number of permutations with given maximal or minimal distance. J Combin Theory Ser A, 1977, 22: 352-360
|
| [6] |
Diaconis P., Shahshahani M. Generating a random permutation with random transpositions. Zeit Für Wahrscheinlichkeitstheorie, 1981, 57: 159-179
|
| [7] |
Ellis D. A proof of the Deza-Frankl conjecture. arXiv: 0807.3118, 2008
|
| [8] |
Ellis D., Friedgut E., Pilpel H. Intersecting families of permutations. J Amer Math Soc, 2011, 24(3): 649-682
|
| [9] |
Erdős P., Ko C., Rado R. Intersection theorems for systems of finite sets. Quart J Math Oxford Ser, 1961, 12(2): 313-320
|
| [10] |
Godsil C., Meagher K. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. European J Combin, 2009, 29: 404-414
|
| [11] |
Halverson T., Ram A. Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection group G(r, p, n). Can J Math, 1998, 50(1): 167-192
|
| [12] |
James G, Kerber A. The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, 1981, 16
|
| [13] |
Larose B., Malvenuto C. Stable sets of maximal size in Kneser-type graphs. European J Combin, 2004, 25(5): 657-673
|
| [14] |
Li Y S, Wang J. Erdős-Ko-Rado-type theorems for colored sets. Electron J Combin, 2007, 14(1)
|
| [15] |
Read E. W. On the finite imprimitive unitary reflection groups. J Algebra, 1977, 45(2): 439-452
|
| [16] |
Serre J. -P. Linear Representations of Finite Groups, 1977, Berlin: Springer-Verlag
|
| [17] |
Shephard G. C., Todd J. A. Finite unitary reflection groups. Can J Math, 1954, 6: 274-304
|
| [18] |
Wang J., Zhang S. J. An Erdős-Ko-Rado-type theorem in Coxeter groups. European J Combin, 2008, 29: 1112-1115
|