Erd?s-Ko-Rado theorem for irreducible imprimitive reflection groups
Li WANG
Erd?s-Ko-Rado theorem for irreducible imprimitive reflection groups
Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any σ, π ∈ H, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m, p, n) is a coset of the stabilizer of a point in {1, . . . , n} provided n is sufficiently large.
Erdős-Ko-Rado theorem / representation theory / imprimitive reflection groups
[1] |
Ariki S. Representation theory of a Hecke algebra of G(r, p, n). J Algebra, 1995, 177: 164-185
CrossRef
Google scholar
|
[2] |
Ariki S, Koike K. A Hecke algebra of
CrossRef
Google scholar
|
[3] |
Birkhoff G. Three observations on linear algebra. Univ Nac Tucumisán Revista A, 1946, 5: 147-151
|
[4] |
Cameron P J, Ku C Y. Intersecting families of permutations. European J Combin, 2003, 24(7): 881-890
|
[5] |
Deza M, Frankl P. On the maximum number of permutations with given maximal or minimal distance. J Combin Theory Ser A, 1977, 22: 352-360
CrossRef
Google scholar
|
[6] |
Diaconis P, Shahshahani M. Generating a random permutation with random transpositions. Zeit Für Wahrscheinlichkeitstheorie, 1981, 57: 159-179
CrossRef
Google scholar
|
[7] |
Ellis D. A proof of the Deza-Frankl conjecture. arXiv: 0807.3118, 2008
|
[8] |
Ellis D, Friedgut E, Pilpel H. Intersecting families of permutations. J Amer Math Soc, 2011, 24(3): 649-682
CrossRef
Google scholar
|
[9] |
Erdős P, Ko C, Rado R. Intersection theorems for systems of finite sets. Quart J Math Oxford Ser, 1961, 12(2): 313-320
|
[10] |
Godsil C, Meagher K. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. European J Combin, 2009, 29: 404-414
CrossRef
Google scholar
|
[11] |
Halverson T, Ram A. Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection group G(r, p, n). Can J Math, 1998, 50(1): 167-192
CrossRef
Google scholar
|
[12] |
James G, Kerber A. The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, 1981, 16
|
[13] |
Larose B, Malvenuto C. Stable sets of maximal size in Kneser-type graphs. European J Combin, 2004, 25(5): 657-673
CrossRef
Google scholar
|
[14] |
Li Y S, Wang J. Erdős-Ko-Rado-type theorems for colored sets. Electron J Combin, 2007, 14(1)
|
[15] |
Read E W. On the finite imprimitive unitary reflection groups. J Algebra, 1977, 45(2): 439-452
CrossRef
Google scholar
|
[16] |
Serre J-P. Linear Representations of Finite Groups. Berlin: Springer-Verlag, 1977
|
[17] |
Shephard G C, Todd J A. Finite unitary reflection groups. Can J Math, 1954, 6: 274-304
CrossRef
Google scholar
|
[18] |
Wang J, Zhang S J. An Erdős-Ko-Rado-type theorem in Coxeter groups. European J Combin, 2008, 29: 1112-1115
CrossRef
Google scholar
|
/
〈 | 〉 |