Erd?s-Ko-Rado theorem for irreducible imprimitive reflection groups

Li WANG

PDF(237 KB)
PDF(237 KB)
Front. Math. China ›› 2012, Vol. 7 ›› Issue (1) : 125-144. DOI: 10.1007/s11464-011-0167-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Erd?s-Ko-Rado theorem for irreducible imprimitive reflection groups

Author information +
History +

Abstract

Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any σ, πH, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m, p, n) is a coset of the stabilizer of a point in {1, . . . , n} provided n is sufficiently large.

Keywords

Erdős-Ko-Rado theorem / representation theory / imprimitive reflection groups

Cite this article

Download citation ▾
Li WANG. Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups. Front Math Chin, 2012, 7(1): 125‒144 https://doi.org/10.1007/s11464-011-0167-0

References

[1]
Ariki S. Representation theory of a Hecke algebra of G(r, p, n). J Algebra, 1995, 177: 164-185
CrossRef Google scholar
[2]
Ariki S, Koike K. A Hecke algebra of (ℤ/rℤ)Sn and construction of its irreducible representations. Adv Math, 1994, 106: 216-243
CrossRef Google scholar
[3]
Birkhoff G. Three observations on linear algebra. Univ Nac Tucumisán Revista A, 1946, 5: 147-151
[4]
Cameron P J, Ku C Y. Intersecting families of permutations. European J Combin, 2003, 24(7): 881-890
[5]
Deza M, Frankl P. On the maximum number of permutations with given maximal or minimal distance. J Combin Theory Ser A, 1977, 22: 352-360
CrossRef Google scholar
[6]
Diaconis P, Shahshahani M. Generating a random permutation with random transpositions. Zeit Für Wahrscheinlichkeitstheorie, 1981, 57: 159-179
CrossRef Google scholar
[7]
Ellis D. A proof of the Deza-Frankl conjecture. arXiv: 0807.3118, 2008
[8]
Ellis D, Friedgut E, Pilpel H. Intersecting families of permutations. J Amer Math Soc, 2011, 24(3): 649-682
CrossRef Google scholar
[9]
Erdős P, Ko C, Rado R. Intersection theorems for systems of finite sets. Quart J Math Oxford Ser, 1961, 12(2): 313-320
[10]
Godsil C, Meagher K. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. European J Combin, 2009, 29: 404-414
CrossRef Google scholar
[11]
Halverson T, Ram A. Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection group G(r, p, n). Can J Math, 1998, 50(1): 167-192
CrossRef Google scholar
[12]
James G, Kerber A. The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, 1981, 16
[13]
Larose B, Malvenuto C. Stable sets of maximal size in Kneser-type graphs. European J Combin, 2004, 25(5): 657-673
CrossRef Google scholar
[14]
Li Y S, Wang J. Erdős-Ko-Rado-type theorems for colored sets. Electron J Combin, 2007, 14(1)
[15]
Read E W. On the finite imprimitive unitary reflection groups. J Algebra, 1977, 45(2): 439-452
CrossRef Google scholar
[16]
Serre J-P. Linear Representations of Finite Groups. Berlin: Springer-Verlag, 1977
[17]
Shephard G C, Todd J A. Finite unitary reflection groups. Can J Math, 1954, 6: 274-304
CrossRef Google scholar
[18]
Wang J, Zhang S J. An Erdős-Ko-Rado-type theorem in Coxeter groups. European J Combin, 2008, 29: 1112-1115
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(237 KB)

Accesses

Citations

Detail

Sections
Recommended

/