Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups

Li Wang

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 125 -144.

PDF (237KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 125 -144. DOI: 10.1007/s11464-011-0167-0
Research Article
RESEARCH ARTICLE

Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups

Author information +
History +
PDF (237KB)

Abstract

Let Ω be a finite set, and let G be a permutation group on Ω. A subset H of G is called intersecting if for any σ, πH, they agree on at least one point. We show that a maximal intersecting subset of an irreducible imprimitive reflection group G(m, p, n) is a coset of the stabilizer of a point in {1, …, n} provided n is sufficiently large.

Keywords

Erdős-Ko-Rado theorem / representation theory / imprimitive reflection groups

Cite this article

Download citation ▾
Li Wang. Erdős-Ko-Rado theorem for irreducible imprimitive reflection groups. Front. Math. China, 2011, 7(1): 125-144 DOI:10.1007/s11464-011-0167-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ariki S. Representation theory of a Hecke algebra of G(r, p, n). J Algebra, 1995, 177: 164-185

[2]

Ariki S., Koike K. A Hecke algebra of (ℤ/rℤ)~ℒn and construction of its irreducible representations. Adv Math, 1994, 106: 216-243

[3]

Birkhoff G. Three observations on linear algebra. Univ Nac Tucumán Revista A, 1946, 5: 147-151

[4]

Cameron P. J., Ku C. Y. Intersecting families of permutations. European J Combin, 2003, 24(7): 881-890

[5]

Deza M., Frankl P. On the maximum number of permutations with given maximal or minimal distance. J Combin Theory Ser A, 1977, 22: 352-360

[6]

Diaconis P., Shahshahani M. Generating a random permutation with random transpositions. Zeit Für Wahrscheinlichkeitstheorie, 1981, 57: 159-179

[7]

Ellis D. A proof of the Deza-Frankl conjecture. arXiv: 0807.3118, 2008

[8]

Ellis D., Friedgut E., Pilpel H. Intersecting families of permutations. J Amer Math Soc, 2011, 24(3): 649-682

[9]

Erdős P., Ko C., Rado R. Intersection theorems for systems of finite sets. Quart J Math Oxford Ser, 1961, 12(2): 313-320

[10]

Godsil C., Meagher K. A new proof of the Erdős-Ko-Rado theorem for intersecting families of permutations. European J Combin, 2009, 29: 404-414

[11]

Halverson T., Ram A. Murnaghan-Nakayama rules for characters of Iwahori-Hecke algebras of the complex reflection group G(r, p, n). Can J Math, 1998, 50(1): 167-192

[12]

James G, Kerber A. The representation theory of the symmetric group. Encyclopedia of Mathematics and its Applications, 1981, 16

[13]

Larose B., Malvenuto C. Stable sets of maximal size in Kneser-type graphs. European J Combin, 2004, 25(5): 657-673

[14]

Li Y S, Wang J. Erdős-Ko-Rado-type theorems for colored sets. Electron J Combin, 2007, 14(1)

[15]

Read E. W. On the finite imprimitive unitary reflection groups. J Algebra, 1977, 45(2): 439-452

[16]

Serre J. -P. Linear Representations of Finite Groups, 1977, Berlin: Springer-Verlag

[17]

Shephard G. C., Todd J. A. Finite unitary reflection groups. Can J Math, 1954, 6: 274-304

[18]

Wang J., Zhang S. J. An Erdős-Ko-Rado-type theorem in Coxeter groups. European J Combin, 2008, 29: 1112-1115

AI Summary AI Mindmap
PDF (237KB)

854

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/