New method for general Kennaugh’s pseudo-eigenvalue equation in radar polarimetry

Sitao Ling , Tongsong Jiang

Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 85 -95.

PDF (141KB)
Front. Math. China ›› 2011, Vol. 7 ›› Issue (1) : 85 -95. DOI: 10.1007/s11464-011-0166-1
Research Article
RESEARCH ARTICLE

New method for general Kennaugh’s pseudo-eigenvalue equation in radar polarimetry

Author information +
History +
PDF (141KB)

Abstract

Kennaugh’s pseudo-eigenvalue equation is a basic equation that plays an extremely important role in radar polarimetry. In this paper, by means of real representation, we first present a necessary and sufficient condition for the general Kennaugh’s pseudo-eigenvalue equation having a solution, characterize the explicit form of the solution, and then study the solution of Kennaugh’s pseudo-eigenvalue equation. At last, we propose a new technique for finding the coneigenvalues and coneigenvectors of a complex matrix under appropriate conditions in radar polarimetry.

Keywords

Kennaugh’s equation / coneigenvalue / coneigenvector / real representation

Cite this article

Download citation ▾
Sitao Ling, Tongsong Jiang. New method for general Kennaugh’s pseudo-eigenvalue equation in radar polarimetry. Front. Math. China, 2011, 7(1): 85-95 DOI:10.1007/s11464-011-0166-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bevis J. H., Hall F. J., Hartwig R. E., Uhlig F., Grone R. Consimilarity and the matrix equation $A\bar X - XB = C$. Current Trends in Matrix Theory, 1987, Amsterdam: North- Holland, 51-64

[2]

Bevis J. H., Hall F. J., Hartwig R. E. The matrix equation $A\bar X - XB = C$ and its special cases. SIAM J Matrix Anal Appl, 1988, 9: 348-359

[3]

Hong Y. P., Horn R. A. A canonical form for matrices under consimilarity. Linear Algebra Appl, 1988, 102: 143-168

[4]

Horn R. A., Johnson C. R. Matrix Analysis, 1985, New York: Cambridge University Press

[5]

Jamson A. Solutions of the equation AX −XB = C by inversion of a M × M or N × N matrix. SIAM J Appl Math, 1968, 16: 1020-1023

[6]

Jiang T., Wei M. On solutions of the matrix equations X−AXB = C and $X - A\bar XB = C$. Linear Algebra Appl, 2003, 367: 225-233

[7]

Kostinski A. B., Boerner W. M. On foundations of radar polarimetry. IEEE Trans Antennas Propagation, 1986, AP-34: 1395-1404

[8]

Luneburg E. Principles of radar polarimetry. IEEE Transactions on Electronics (Special Issue on Electromagnetic Theory), 1995, E78-c(10): 1339-1345

[9]

Luneburg E. Aspects of radar polarimetry. Turkish J Electrical Engineering and Computer Sciences, 2002, 10: 219-243

[10]

Roth W. E. The equations AX −Y B = C and AX −XB = C in matrices. Proc Amer Math Soc, 1952, 3: 392-396

AI Summary AI Mindmap
PDF (141KB)

964

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/