General estimate of the first eigenvalue on manifolds

Mu-Fa CHEN

PDF(331 KB)
PDF(331 KB)
Front. Math. China ›› DOI: 10.1007/s11464-011-0164-3
RESEARCH ARTICLE
RESEARCH ARTICLE

General estimate of the first eigenvalue on manifolds

Author information +
History +

Abstract

Ten sharp lower estimates of the first non-trivial eigenvalue of Laplacian on compact Riemannian manifolds are reviewed and compared. An improved variational formula, a general common estimate, and a new sharp one are added. The best lower estimates are now updated. The new estimates provide a global picture of what one can expect by our approach.

Keywords

First non-trivial eigenvalue / sharp estimate / Riemannian manifold

Cite this article

Download citation ▾
Mu-Fa CHEN. General estimate of the first eigenvalue on manifolds. Front Math Chin, https://doi.org/10.1007/s11464-011-0164-3

References

[1]
Bérard P H, Besson G, Gallot S. Sur une inéqualité isopérimétrique qui généralise celle de Paul Lévy-Gromov. Invent Math, 1985, 80: 295-308
[2]
Chen M F. Optimal Markovian couplings and applications. Acta Math Sin (New Ser), 1994, 10(3): 260-275
CrossRef Google scholar
[3]
Chen M F. Explicit bounds of the first eigenvalue. Sci China (A), 2000, 43(10): 1051-1059
CrossRef Google scholar
[4]
Chen M F. Variational formulas and approximation theorems for the first eigenvalue. Sci China (A), 2001, 44(4): 409-418 (The last three and related papers with some complements were collected in book [4] at the author’s homepage: http://math.bnu.edu.cn/∼chenmf/)
CrossRef Google scholar
[5]
Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005
[6]
Chen M F. Speed of stability for birth-death processes. Front Math China, 2010, 5(3): 379-515
CrossRef Google scholar
[7]
Chen M F, Scacciatelli E, Yao L. Linear approximation of the first eigenvalue on compact manifolds. Sci Sin (A), 2002, 45(4): 450-461
[8]
Chen M F, Wang F Y. Application of coupling method to the first eigenvalue on manifold. Sci Sin (A), 1993, 23(11): 1130-1140 (Chinese Edition); 1994, 37(1): 1-14 (English Edition)
[9]
Chen M F, Wang F Y. General formula for lower bound of the first eigenvalue on Riemannian manifolds. Sci Sin (A), 1997, 40(4): 384-394
[10]
Jia F. Estimate of the first eigenvalue of a compact Riemannian manifold with Ricci curvature bounded below by a negative constant. Chin Ann Math, 1991, 12A(4): 496-502 (in Chinese)
[11]
Lichnerowicz A. Géométrie des Groupes des Transformations. Paris: Dunod, 1958
[12]
Ling J. Lower bounds of the eigenvalues of compact manifolds with positive Ricci curvature. Proc Amer Math Soc, 2006, 134(10): 3071-3079
CrossRef Google scholar
[13]
Ling J. An exact solution to an equation and the first eigenvalue of a compact manifold. Illinois J Math, 2008, 51(3): 853-860
[14]
Schoen S, Yau S T. Differential Geometry. Beijing: Science Press, 1988 (in Chinese). English Translation: Lectures on Differential Geometry. Boston: International Press, 1994
[15]
Shi Y M, Zhang H C. Lower bounds for the first eigenvalue on compact manifolds. Chin Ann Math, 2007, 28A(6): 863-866 (in Chinese)
[16]
Wang F Y. Functional Inequalities, Markov Processes, and Spectral Theory. Beijing: Science Press, 2004
[17]
Xu S L, Pang H D. Estimate of the first eigenvalue on compact manifolds. Math Appl, 2001, 14(1): 116-119
[18]
Xu S L, Yang F Y, Xu X. Estimate of the first eigenvalue of compact manifold with positive Ricci curvature. Math Appl, 2002, 15(2): 85-88 (in Chinese)
[19]
Yang H C. Estimate of the first eigenvalue for a compact Riemannian manifold. Sci Sin (A), 1990, 33(1): 39-51
[20]
Zhao D. Eigenvalue estimate on a compact Riemannian manifold. Sci China (A), 1999, 42(9): 897-904
CrossRef Google scholar
[21]
Zhong J Q, Yang H C. Estimates of the first eigenvalue of a compact Riemannian manifold. Sci Sin (A), 1984, 27(12): 1265-1273

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(331 KB)

Accesses

Citations

Detail

Sections
Recommended

/